Page 1 of __/_ 1.EDT 605117 ENGINEERING DATA TRANSMITTAL

2. To: (Receiving Organization)	·	3. From: (0:	_			4. Related	EDT No.	:		
Distribution	.	Environme	ntal	Engine	ering		N/A	4		
	Support									
5. Proj./Prog./Dept./Div.: 6. Cog. Engr.: 100 Area Treatability J. D. Ludowise						7. Purchase Order No.:				
100 Area Treatability		J. D. Luo	IOWISE	; 		0 5-45-	N//			
8. Originator Remarks:			12	34567	897	9. Equip./	rcomponen N/			
For Approval/Release		/.		▲	.012	10. System				
		(8)	Ş'	MAY 190	1 23	10. 07316	N/.	•	•	
11. Receiver Remarks:		- R		RECFIVE	89 10 TT 12 13 14 15 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10	12. Major				
11. Receiver Kemarks.		126/		EPIC	ਭ <u>ਭ</u>		N/			
		/6	3		, š/	13. Permi			tion	No.;
			1657	_	26 BY		N/	Α		
			10	212233	00	14. Requi	red Respo	nse Dat	e:	
							5-01	-94		
15.	DAT	A TRANSMITTED)			(F)	(6)	(H)		(1)
(A) Item (B) Decliment/Drawing No.	(C) Sheet	(D) Rev.	(E		scription of Data	Impact	Reason for	Origi- nator	Re	eceiv- er
No. (B) Document/Drawing No.	No.	No.		Tran	smitted	Level	Trans- mittal	Dispo- sition)ispo- sition
1 WHC-SD-EN-TI-240		0	Vitr	rificat	ion Testing	4	1/2	1	- 	
1 WIIC-3D-EN-11-240					nes from	1	-/-	_	İ	
			•		ed Hanford					•
		'	100 Soil		nd 300 Area					
			3011	5				 		
		-	 			-		-	1	
							Ì		_	
16.			ł KE	Y			<u> </u>		!	
Impact Level (F)	Reaso	n for Transmittal	(G)			Dispositio	on (H) & (I)			
1, 2, 3, or 4 (see 1. Appro MRP 5,43) 2, Relea		eview est-Review			Approved Approved w/co		4. Reviewe 5. Reviewe			
3. Inforr		st. (Receipt Ackn	ow. Requ	uired)	3. Disapproved w		6. Receipt			
(G) (H) 17.	•			DISTRIBUTIO r required sig					(G)	(H)
Rea- Disp. (J) Name (I	() Signature	(L) Date (M) M	SIN	(J) Na	me (K) Sîghat	ture (L) Date	(M) MSI	V	Rea- son	Disp.
1/2 Cog.Eng. J. D.	Ludowise	1 1-15-94	H6-05	EDMC (2)		H	4-22	3	
1/2 Cog. Mgr. J. G.	Woolard	Wester 14	√16-05	Central	Files		L	B-04	3	
QA	2	` 1	17							
Safety										
Env.		, wav								
1/2 R. A. Merrill	Ca Mund	4-20-94	P7-41							<u> </u>
				<u></u>						<u> </u>
18.	' .		20		^	21. DOE /		(if red	uired	i)
J. D. Ludowise . 4-15-94			W.	is yst h	1/ 4/22/9	[] Appro				
Signature of EDT Date Au	rthorized Repre	esentative Date		ognizant/Pro		(Disap	proved w/	comment	s	

'Da	te Reteiveo		INFORM	ATION	RELEASE	REQU	EST		Reference: WHC-CM-3-4
	(25/79A)=====		Comple	e for a	ll Types of	Release			
	. Pu	pose				ID Numi	per (include re		, etc.)
[3	Speech or Presentation			ierence	•	WHC-S	SD-EN-TI-24	0, Rev. 0	
	[] Full Paper (Che		1	chnical Rep esis or Dis		List a	ttachments.	····	
	[] Summary suff	x)	1	nual		N/A			
	[] Abstract [] Visual Aid		l	chure/Flier ftware/Dat					
[]	C) Visual Alo Speakers Bureau		1	ntrolled Do		Date R	elease Required	l	<u> </u>
[3	Poster Session		[] Ot	her		}	May	1, 1994	
[]	Videotape		<u> </u>				Unclassified		Impact
Ar	tle Vitrification Testing of 9 ea and 300 Area Soils						UC-630		Level NA
Ne	w or novel (patentable) subject matter? "Yes", has disclosure been submitted by	[X]	No L Y				inventions?	105,100, 000,1 00 p.	-
"	No Yes Disclosure No(s).	,,,,,	oution company	-	[X] No	[] Y	es (identify)		II.
1-	pyrights? [X] No [] Yes				Trademark	rs?	 		
	"Yes", has written permission been grant	ed?			[X] No	[] Y	es (Identify)		
] [No Yes (Attach Permission)								
-	The state of the s		Complet	e for Sp	eech or Pres		Sponsoring		
41	itle of Conference or Meeting /A				aroup of	300161)	abouton trig		
_	/ nate(s) of Conference or Meeting	City	/State		T W	ill proceedi	ngs be published?	[] Yes	[] No
2					1	•	be handed out?	[] Yes	[] No
T	itle of Journal	.!			,				
L									
_		 ;			FOR SIGNATOR		:		
<u>R</u>	eview Required per WHC-CM-3-4	<u>Ye</u>	<u>s No</u>	Revi	<u>ewer</u> - Signa Name (print		icates Approval Sig	<u>mature</u>	Date
ı	lassification/Unclassified Controlled	r r] [x]						•
- 1	uclear Information atent - General Counsel	[_		 -	
1	egal - General Counsel	[>	-	معم	DGC 1040	<u> </u>	-11-62 1 2W	&	4-22-99
1	pplied Technology/Export Controlled	[>	(]		<u>"</u>				
	formation or International Program	[] [x]					<u></u>	
V	VHC Program/Project	[] [x]	-					
0	ommunications	Ī] [x]				•	~ f /\	
F	L Program/Project		رًا (x	E.D). Goller	 	512	Yel L	4/18/94
P	ublication Services	[)			R. Knight		-mR K	mult	4-22-94
	other Program/Project] [x]					7	
1	nformation conforms to all appl				above infor	mation i	certified to	be correct.	
	·	-		40			RELEASE ADMINIS		
- }	References Available to Intended Audience Transmit to DOE-HQ/Office of Scientific	' [x] !		Stamp is require mandatory com		elease. Release is c	ontingent upon res	solution of
	and Technical Information	Γ	x]	ן נו			FO		
1	Author/Requestor (Printed/Signat		Dat				10132	The second	
⊢	J.D. Ludowise	L	1/ 4-1	5-94			S.V.	T. CAS	
	Intended Audience								
	[] Internal [] Sponsor		External				1/b	194	
	Responsible Manager (Printed/Sig	nature)	Dat i i	e /			. ***		
-	J.G. Woolard & Motor	V	. 4/K/	44 F	Date Cancell	ed	Da	ate Disapprove	d

WHC-SD-EN-TI-240, Rev. 0

ID Number

ead Author			Phone	MSIN	• • • • • • • • • • • • • • • • • • •					
.D. Ludowise			6-6470	H6-	US			DOT VOS	Henn	o*c `
roject or Program	Lead Org Code 81340			Sponsor Agency (DOE, DOT, NRC, USGS, etc.)						
nvironmental Restoration				D0e		FU 50 UF	-4 \	 		
ditor	Phone	MSIN		EM	/HQ Program (DP,	EH, EM, NE,	etc.;	,		
1. Knight			2-3783	<u> </u>		EIT	B 1 2	T 5 1	1000	
andatory Comments (Only mandatory com ocumented. All other comments should be ma he information submitted for review and return	de on a copy	of]	Reviewer Na & Signature		Date		Resolution	Reviewer N & Signatur		Date
He Information submitted to review the										
							·			-
						ļ				
				-+						
<u> </u>										
<u></u>										
•								1		
				_						
•										
								}		
				 -					-	-
Legends/Notices/Markings (required p	per WHC-CM-	3-4 c	r guidance c	organiz	zation	n.) (F	Reviewer initials	_	41.7	Affix
	<u>Affi</u> <u>Yes</u>	ix No	r guidance c					s) -	Yes	_
Applied Technology	Affi Yes []	<u>ix</u> <u>No</u> []	r guidance c	Prede	cisiona	il Infor	nation	_	Yes	<u>No</u>
Applied Technology Business-Sensitive Information	Affi Yes [] []	<u>No</u> []	l r guidance c	Predeo Progra	cisiona ammati	il Inforr ic Noti	nation ce	_	[]	. <u>No</u>
Applied Technology Business-Sensitive Information Computer Software Notice	Affi Yes []	ix No [] []	l r guidance c	Predec Progra	cisiona ammati ietary l	i Inforr ic Noti nforma	nation ce	_	[]	. <u>No</u>
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice	Affi Yes [] []	ix No [] [] []	l r guidance c	Preder Progra Propri Purpo	cisiona ammati ietary l ise and	i Inforr ic Noti nforma Use	nation ce	_	[]	E No
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information	Affi Yes [] [] [] []	ix No [] [] []	r guidance c	Predec Progra Propri Purpo Thesis	cisiona ammati ietary l ise and s/Disse	il Informatic Notice No	mation ce stion	_	[]	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer	Affi Yes [] [] [] []	ix No [] [] [] []	r guidance c	Predec Progra Propri Purpo Thesis Trade	cisiona ammati ietary l ise and s/Disse emark E	il Informatic Noti ic Noti informatic Use ertation Disclair	mation ce ation	.	[]	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure	Affi Yes [] [] [] [] []	ix No [] [] []	l r guidance c	Predect Progra Propri Purpo Thesis Trade: Uncla	cisiona ammati ietary l ise and s/Disse mark E	il Informatic Noti ic Noti informatic Use ertation Disclair	mation ce stion	.	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer	Affi Yes [] [] [] []	ix No [] [] [] []	r guidance c	Predec Progra Propri Purpo Thesis Trade	cisiona ammati ietary l ise and s/Disse mark E	il Informatic Noti ic Noti informatic Use ertation Disclair	mation ce ation	.	[]	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure	Affi Yes [] [] [] [] []	ix No [] [] [] [] [] [] []	r guidance c	Predect Progra Proprid Purpo: Thesis Trade: Uncla Use O	cisiona ammati etary li ese and s/Disse emark E ensified Only	il Information Notice N	mation ce ation	- tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure	Affi Yes [] [] [] [] []	ix No [] [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- - tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- - tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- - tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- - tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- - tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- - tion/Official	. E 3	
Applied Technology Business-Sensitive Information Computer Software Notice Copyright License Notice Export Controlled Information Legal Disclaimer Limited Disclosure Patent Status	Affi Yes [] [] [] [] []	ix No [] [] [] [] []		Predec Progra Propri Purpo: Thesis Trade: Uncla Use O	cisiona ammati ietary li ise and s/Disse emark E issified Only	il Information Notice N	nation ce stion n ner olled Nuclear Informa	- - tion/Official	. E 3	

SUPPORTING DOCUMENT		1. Total Pages 103
2. Title Vitrification Testing of Soil Fines From Contaminated Hanford 100 Area and 300 Area Soils	3. Number WHC-SD-EN-TI-2	4. Rev No.
5. Key Words soil vitrification, crucible testing, ex situ vitrification 7. Abstract 7. Abstract 7. Abstract	6. Author Name: J.D. Ludo Agnature Organization/Charge	
WHC, 1994, Vitrification Testing of Soil Fines Fro and 300 Area Soils, WHC-SD-EN-TI-240, Rev. 0, prep Northwest Laboratory, for Westinghouse Hanford Com. 8. PRRPOSE AND USE OF DOCUMENT. This document was prepared for the witbin the U.S. Department of beingy and its contractors. It is, be used only to perform, direct, on integrate work up U.S. Department of chergy contracts. This document is not approved for public release until reviewed. PATENT SNIUS - This document copy since it is transpitted advance of tent clearance, is mad available in confidence so for use an performance of work under contracts with U.S. Department of Energy. This document is not to be sublished its contents otherwise disseminated or used for purposes other the specified above before patent approval for such release or use in been secured, upon inquest, from the Patent Dunsel, U.S. Department of the property field Office, Richland, WA. DISCLAIMER - This report was prepared as an account of we sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of the employees, makes any warranty, express or implied, or assumes legal liability or responsibility for the accuracy, completeness, any third party's use or the results of such use of any informatic apparatus, product, or process disclosed, or represents that its would not infringe privately owned rights. Reference herein to specific commercial product, process, or service by trade nathrademark, manufacturer, or otherwise, does not necessar constitute or imply its endorsement, recommendation, or favoring the United States Government or any agency thereof or contractors or subcontractors. The views and opinions of auth	pared by R.A. Me apany, Richland, last of the correct or correct o	rrill, Pacific

9. Impact Level NA

WHC-SD-EN-TI-240, Rev. 0

ACRONYMS

EPA	U.S. Environmental Protection Agency
ICP/AES	inductively coupled plasma/atomic emission spectroscopy
PNL	Pacific Northwest Laboratory
RCRA	Resource Conservation and Recovery Act
TCLP	Toxicity Characteristic Leaching Procedure
WHC	Westinghouse Hanford Company

THIS PAGE INTENTIONALLY LEFT BLANK

CONTENTS

1.0	INTRODUCTION
2.0	CHARACTERIZATION OF THE SOIL FINES
3.0	RESULTS OF SURROGATE TESTING
4.0	RESULTS OF MELTS OF THE 100 AREA AND 300 AREA SOIL FINES
5.0	SUMMARY AND CONCLUSIONS
APP	ENDIXES:
A. B. C. D.	Soil Fines Vitrification Crucible Tests Statement of Work A-Analytical Data
FIG	URES:
1. 2. 3. 4.	Viscosity and Electrical Conductivity for the Hanford Soil-Na ₂ O-CAO Ternary
TAB	LES:
 2. 	Physical Description and Properties of Soil Fines (As Received) Used in the Vitrification Tests
3.	by ICP Analysis
4. 5.	Used in the Vitrification Tests
6.	From the Surrogate Melts
7.	by TCLP Leach Resistance
8. n	Calculated and Analyzed Compositions of the Vitrified Soil Fines
9. 10.	Glass Density and Volume Reduction for Vitrified Soil Fines
_~.	Soil Fines from the 100 Area and 300 Area

WHC-SD-EN-TI-240, Rev. 0

CONTENTS (Continued)

TABLES:

	TCLP Leachate Concentrations of Regulated Metals Present	
	in the Soil Fine's	12
12.	TCLP Leachate Concentrations of Various Isotopes	
	for Vitrified and Nonvitrified Soil Fines	
	from the 100 Area and 300 Area	12

1.0 INTRODUCTION

This report describes the results of crucible scale vitrification tests of soil fines carried out by Pacific Northwest Laboratory (PNL) under the statement of work provided in Appendix A. The soil fines tested include both nonradioactive surrogate from the 600 Area and actual radioactive soil fines from the 100 and 300 Areas. The nonradioactive surrogate came from a pilot scale soil-washing test using uncontaminated soil conducted at the Hanford Geotechnical Development Test Facility in the 600 Area. The 100 Area sample came from laboratory scale tests conducted on soil taken from the 116-D-1B Trench in Operable Unit 100-DR-1 (DOE-RL 1994). The 100 Area soil fines were generated by dry sieving a sample of the 116-D-1B soil to <2 mm, followed by wet sieving of the <2 mm fraction with deionized water to <0.25 mm. The <0.25 mm soil fines and washwater were collected and dried, and a portion of this material was obtained for use in the vitrification tests. The 300 Area sample came from a pilot scale soil-washing test conducted at the 316-2 North Process Pond of Operable Unit 300-FF-1 in June of 1993 using equipment obtained from the U.S Environmental Protection Agency (EPA) (DOE-RL 1993). These soil fines are representative of fines produced by processing soil that was located near the inlet at the southwest corner of the process pond.

Basic physical and chemical properties of the materials were determined. Melts were carried out with about 100 g of material at a temperature of 1450°C. Nine different glass compositions were formulated using the surrogate material, and the results of these tests were used to choose the glass formulation for use with the radioactive test materials. Radioactive samples from both the 100 and 300 Areas were vitrified, and the resulting products were tested for durability (by a slightly modified version of the Toxicity Characteristic Leaching Procedure [TCLP]) and for processability (electrical conductivity and viscosity). Results of these tests are presented in the following chapters. Analytical laboratory data are provided in Appendix B.

2.0 CHARACTERIZATION OF THE SOIL FINES

Table 1 presents the physical description and characterization of the samples of soil fines that were used in these tests. The surrogate was received directly from Westinghouse Hanford Company (WHC) personnel. The 100 Area sample (identified as "100 Area Washed Soil, <0.25 mm, Batch 3, Bucket 3") and the 300 Area sample (identified as "300 Area, B08NM3, extra fines from slurry sample") were obtained from the organization within PNL performing gamma counting on the soil fines. The data in Table 1 are based on the as-received condition of the samples.

Table 2 reports the elemental composition of the soil fines samples as determined by sodium peroxide/potassium hydroxide fusions and inductively coupled plasma/atomic emission spectroscopy (ICP/AES) analysis. These values are compared to the typical range reported for Hanford soils. It appears that the composition of 100 Area samples differs somewhat from that of the other soil fines samples and bulk Hanford soil. The 100 Area soil fines appear to

Table 1. Physical Description and Properties of Soil Fines (As Received) Used in the Vitrification Tests.

		Soil Fines Sample	
	Surrogate	100 Area .	300 Area
Description	A fairly coarse sand with a substantia! amount of fine, powdery material mixed in with it.	The material was fine and powdery with no coarse grains (reported as <0.25mm). It had been dried before it was received.	The material was coarse grained similar to the surrogate (reported as <0.425mm). Since it was wet, it was not apparent if there were substantial fines mixed in.
Bulk Density	1.48	1.50	1.70
Moisture	2.2	1.0	18.6

Table 2. Chemical Composition of the Soil Fines as Determined by ICP Analysis (wt% oxide).

				Typical Hanford	Range of Soil*
0xide	Surrogate	100 Area	300 Area	Low	High
SiO ₂	60.4	66.2	63.4	58.00	64.4
A1 ₂ 0 ₃	12.7	13.0	14.7	12.5	14.4
Fe ₂ 0 ₃	9.0	5.9	8.2	8.2	11.5
CaO	5.7	3.8	5.1	5.4	6.8
Na _ż O	3.2	3.6	1.1	2.7	3.2
K ₂ 0	3.1	3.4	2.2	1.4	2.5
Mg0	2.8	2.0	2.5	1.4	3.4
TiO ₂	1.6	1.0	1.4	1.4	2.1
Other	1.6	1.1	1.2		

* Source: Buelt et al. (1987)

be higher in silica and lower in iron and calcia than both the other samples and the typical Hanford soil. This may be because this sample was composed of only the fine material (<0.25mm) present in the soil and did not have any of the larger grains present in the other samples. This indicates that the very fine fraction of materials washed from the soils may differ in composition from the bulk soil. The impact of the observed difference in composition for the 100 Area fines would be an increase in the glass viscosity relative to the same formulation using the bulk Hanford soil; however, the difference was not expected to be large. Therefore, existing data on the vitrification of Hanford soils were expected to be reasonably applicable to the soil fines.

The data for sodium are believed to be somewhat inaccurate due to problems with the sodium channel of the ICP. The error in the ICP measurement is estimated to be as large as plus or minus several absolute percent; therefore, the soda data are of questionable validity. Nevertheless, the effect of this error on the values of the other elements is small (less than a few relative percent). The measured values of sodium for the surrogate and 100 Area soil fines appear to be reasonably accurate, assuming the true value is in the range reported for typical Hanford soil. The measured soda content of the 300 Area soil fines appears to be low by a few percent. This would result in a final glass composition that is a few percent higher than the predicted composition. The uncertainty in the soda content of the soil fines does not significantly affect the glass formation in these tests but does decrease the ability to correlate the observed results to the alkali content of the glass.

Table 3 presents the isotopic composition of the soil fines samples. These results were obtained from the organization within PNL performing the radiochemical analysis of the soil fines. The 100 Area results are calculated from the activities measured for two size fractions of the <0.25 mm soil fines (<0.074 mm and 0.074 mm to <0.25 mm) with the exception of strontium and plutonium, which are reported for the <2.0 mm size fraction (the only fraction for which information was available). The 300 Area soil fines had been wet sieved into different size fractions and each size had been fraction counted, so the activity for the 300 Area sample was calculated from the measured activities of the different sieve fractions of the sample and the mass fraction of soil fines in each size fraction.

3.0 RESULTS OF SURROGATE TESTING

Simple vitrification tests were carried out to demonstrate the applicability of vitrification to the soil fines and to obtain data with actual waste material. Data pertaining to the vitrification of Hanford soils are available as a result of past work in the development of in situ vitrification at PNL. Figure 1 presents reported data for the viscosity and electrical conductivity of melts of a typical Hanford soil. Using this data as a starting point, nine glass compositions were formulated using the surrogate soil fines (Table 4). Replicate melts of one of the formulations (SF9) were performed. The formulations bound compositions estimated to be processable (viscosity of about 100 poise) in melter operating range of 1400°C to 1550°C.

Table 3. Reported Isotopic Composition of Soil Fines Samples Used in the Vitrification Tests (pCi/g).

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Isotope	100 Area	300 Area						
· 60Co	36							
⁹⁰ Sr	12.5*							
¹³⁷ Cs	499							
¹⁵² Eu	579							
²³⁸ U		605						
^{239/240} Pu	2.74*							

-- Not Detected

All of the surrogate formulations formed a homogeneous black glass, typical of melts made from Hanford soil. Some small white inclusions were found around the crucible wall at the melt surface in most of the melts. These are thought to be undissolved silica particles from the starting material and are often seen in melts of Hanford soils.¹ The more fluid melts (SF1, SF6) did not have these crystals, as would be expected since the more fluid melt increases the dissolution rate of the silica particles. Qualitative viscosity checks by pouring the hot melt found reasonable agreement between the data reported in Figure 1 and the observed melt viscosities. If anything, the melts were a little more fluid than the reported data for Hanford soil. As expected, the general trend observed was decreasing viscosity as the amount of CaO or Na2O increased. Melts with the lowest additives (SF2, SF5, SF8) were a little too viscous at 1450°C. The remainder of the melts appeared to have a viscosity in a reasonable processing range.

The leach resistance of the glasses was determined by a slightly modified version of the TCLP. The procedure followed is provided in Appendix C. The TCLP is normally used as a means of characterizing a material as hazardous or nonhazardous, depending upon the leachate concentrations of certain regulated metals. In order to use this test as a measure of glass durability, the leachate concentration is measured for the major elemental constituents in the glass, not just the regulated metals. Additionally, the leachate concentrations of the major elemental constituents must be related to the initial concentration of the constituent in the glass. This is achieved by expressing the leaching results as the "fractional release" rather than the

From the <2 mm size fraction rather than <0.25 mm

¹The presence of the undissolved silica on the surface of the melt is not of particular concern at this stage of development (crucible melts). Such effects are often caused by interaction of the molten glass with the crucible, and incomplete dissolution or volatilization from the melt surface (which leads to silica enrichment). The bulk of the glass was homogeneous and free from inclusions and is representative of the product expected from a continuous melter.

Figure 1. Viscosity (100 Poise Temperature) and Electrical Conductivity for the Hanford Soil-Na₂O-CaO Ternary (From Buelt et al. 1987).

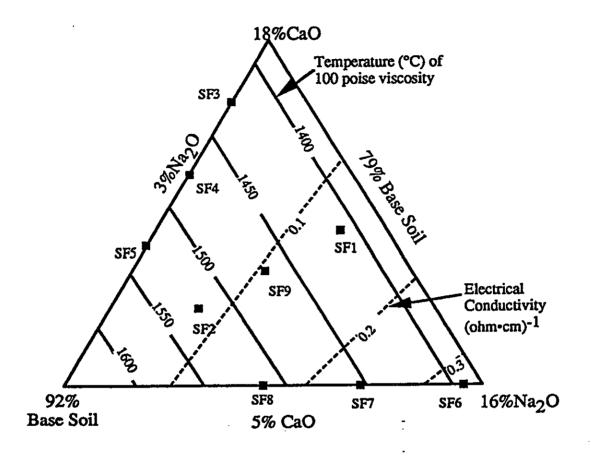


Table 4. Soil Fines Surrogate Melt Formulations.

Table 4. 3011 Thes surrogate here formulations.								
44 - 7 1	Target Co	ompositio	n (wt%) ^(a)	Melt Formulation (g material)				
Melt	Base	CaO	Na ₂ O	Surrogate ^(b)	Ca(OH) ₂	Na ₂ CO ₃ (c)		
SF1	81.0	10.0	9.0	102.25	8.40	14.09		
SF2	86.5	7.5	6.0	102.25	3.94	6.60		
SF3	82.0	15.0	3.0	102.25	15.63	0.72		
SF4	84.5	12.5	3.0	102.25	11.38	0.53		
SF5	87.0	10.0	3.0	102.25	7.36	0.33		
SF6	80.0	5.0	15.0	102.25	0.99	27.82		
SF7	83.0	5.0	12.0	102.25	0.71	20.11		
SF8	86.0	5.0	9.0	102.25	0.46	12.94		
SF9-1	83.7	8.8	7.5	102.25	6.09	10.23		
SF9-2	83.7	8.8	7.5	102.25	6.09	10.23		
SF9-3	83.7	8.8	7.5	102.25	6.09	10.23		

⁽a)Surrogate composition assumed to be that of soil used to obtain data in Figure 1

measured concentration in the leachate. The fractional release is just the mass of an element in the leachate (Appendix D) divided by the total mass of that element initially present in the sample being leached (see Table 2). This calculation also uses a 50 g/L TCLP slurry concentration (see Appendix C). The fractional release expresses the fraction of an element that was leached from the sample and into solution.

Table 5 presents results from the leach testing of the surrogate melts. Leaching from the glasses was low and quite similar for all the formulations. All the formulations produced a durable glass product; however, in order to determine the formulation for use in the radioactive melts, a simple ranking system was developed. The melts were placed in order of increasing fractional release for each element measured. One point was awarded to the most leach resistant melt, two points for the next, and so on. The points received for each element were summed and the melts were arranged by this total score. The melts and the point totals are presented in Table 6. Adjacent melts in this ranking are not statistically different, but the extremes (i.e., melt SF9 compared to SF6) are different. Choice of the most suitable formulation for the radioactive melts cannot be based solely upon the leaching results. A somewhat arbitrary choice was made based partly upon the leaching results and partly upon visual observations of the melts (qualitative viscosity and appearance), and the formulation of melt SF9 was chosen for the radioactive melts.

⁽b) Moisture content of 2.2%

⁽c)Moisture content of 12.4%

Table 5. TCLP Fractional Release of Major Constituent Metals From the Surrogate Melts.

Melt	Aluminum	Calcium	Iron	Magnesium	Silicon	Titanium
SF1	5.5E-05	2.8E-04	7.4E-05	2.1E-04	4.0E-05	1.7E-05*
SF2	7.5E-05	1.7E-04	7.6E-05	2.6E-04·	4.1E-05	2.3E-05*
SF3	6.6E-05	4.4E-04	8.2E-05	3.0E-04	4.1E-05	2.0E-05*
SF4	1.1E-04	2.2E-04	8.8E-05	3.8E-04	4.9E-05	3.4E-05*
SF5	7.3E-05	2.9E-04	8.1E-05	2.7E-04	3.8E-05	1.9E-05*
SF6	1.0E-04	2.9E-04	1.2E-04	3.6E-04	5.8E-05	3.2E-05*
SF7	9.9E-05	2.1E-04	1.0E-04	3.5E-04	4.8E-05	3.0E-05*
SF8	4.0E-05	1.8E-04	1.4E-04	6.1E-05	4.5E-05	1.7E-05*
SF9-1	1.8E-05	2.1E-04	5.8E-05	4.9E-05	3.3E-05	6.5E-06*
SF9-2	2.4E-05	2.6E-04	9.6E-05	6.8E-05	4.0E-05	9.1E-06*
SF9-3	4.4E-05	2.3E-04	9.1E-05	1.3E-04	4.0E-05	1.5E-05*

^{*}TCLP result was less than detection limit. Value was used to rank glass formulations only.

Table 6. Ranking of the Surrogate Glass Formulations by TCLP Leach Resistance.

Melt	Sum of Rankings
. SF9–1	8
SF1	27
SF9-2	27
SF9-3	28
· SF8	31
SF2	. 32
SF5	35
SF3	44
SF7	49
SF4	54
SF6	. 61

4.0 RESULTS OF MELTS OF THE 100 AREA AND 300 AREA SOIL FINES

The formulation of melt SF9 was chosen for use in the radioactive melts based upon results from the surrogate melts. Table 7 reports the formulations for melts using the 100 Area and 300 Area soil fines. Three melts of each formulation were carried out at a temperature of 1450°C. Two melts of each formulation were heated to 1450°C and held for 2 to 3 hours, then allowed to cool within the furnace as the furnace was turned off. The third melt of each formulation was heated in a similar manner but cooled on a programmed temperature profile at a rate of 20°C/hr down to a temperature of 500°C. cooling rate is representative of the slow cooling that would take place in the center of a large, monolithic casting of glass (such as a 2-ft-thick slab). The effects of these different cooling rates on leaching of the glass are considered below. Table 8 reports the calculated (by mass balance) and analyzed (by ICP) compositions of the glasses. Table 9 presents the densities of the glasses and the calculated volume reduction achieved through vitrification. The volume reduction is expressed as the final volume of the vitrified material (waste and additives) expressed as a percent of the initial waste volume.

The melts of both the 100 Area and 300 Area soil fines were similar in appearance to the surrogate melts described above. There were no visible differences between the rapidly cooled melts (100SFR1, 100SFR2, 300SFR1, 300SFR2) and the slowly cooled melts (100SFR3, 300SFR3), indicating that these glasses were very resistant to devitrification, at least to the extent that it is visible to the naked eye. The leaching data (presented below) also show no indication of differences in leaching due to the slow cooldown rate.

Results of TCLP leach testing of both the raw and vitrified soil fines are presented below. Table 10 reports the elemental fractional release for the major elements in the wastes. Leaching from the vitrified soil fines is seen to be reduced significantly (up to 2 orders of magnitude) relative to the unvitrified material. Figure 2 compares the fractional release of the vitrified soil fines to that of various other natural and man-made glasses. The vitrified soil fines are seen to be among the most leach resistant of these materials, demonstrating excellent durability. Table 11 presents the leachate concentrations of TCLP metals that were present in the initial waste (arsenic, mercury, and selenium were not available by ICP/AES analysis). Leachate concentrations from both the vitrified and nonvitrified soil fines are well within the regulatory limits.

Table 12 presents the leachate concentrations for the most prevalent isotopes in the waste. The leachate concentrations of 60 Co, 137 Cs, 52 Eu, and 154 Eu were measured by gamma spectroscopy, while 238 U was measured by uranium fluorimetry. Analysis of the uranium in the 300 Area leachate found the isotopic distribution to be (mass%): 234 U - 0.0055, 235 U - 0.7286, 236 U - 0.0025, 238 U - 99:2634. Upper limits for 90 Sr and $^{239/240}$ Pu were determined by a total alpha/beta screening assuming that all alpha activity resulted from $^{239/240}$ Pu and all beta activity other than the known beta emitters 137 Cs and 152 Eu resulted from 90 Sr. The low activity of the leachates from the vitrified 100 Area soil required that the three samples be combined into a single sample to achieve lower detection limits.

Table 7. Melt Formulations for the 100 and 300 Area Soil Fines (grams of material).

	(3) 41116 61 1114		
Sample	Soil Fines ^(a)	CaCO ₃	Na ₂ CO ₃ (b)
100 Area	202.0	16.5	17.9
300 Area	245.7	15.5	24.9

⁽a)Moisture content of 1.0% for 100 Area, 18.6% for 300 Area

(b) Moisture content of 0.5%

Table 8. Calculated and Analyzed Compositions of the Vitrified Soil Fines (wt% oxide).

	100 A	rea	300 Area			
Oxide	Calculated	Analyzed	Calculated	Analyzed		
SiO ₂	60.2	58.9	56.9	60.2		
A1 ₂ 0 ₃	11.8	15.0	13.2	12.7		
CaO	7.6	8.6	8.5	8.9		
Fe ₂ 0 ₃	5.43	5.7	7.4	7.3		
Na ₂ O	8.0	5.5	7.5	5.0		
K ₂ 0	3.1	2.4	2.0	1.6		
Mg0	1.8	1.9	2.2	2.1		
TiO ₂	0.9	0.9	1.3	1.2		
other	1.0	1.0	1.1	0.9		

Table 9. Glass Density and Volume Reduction for Vitrified Soil Fines.

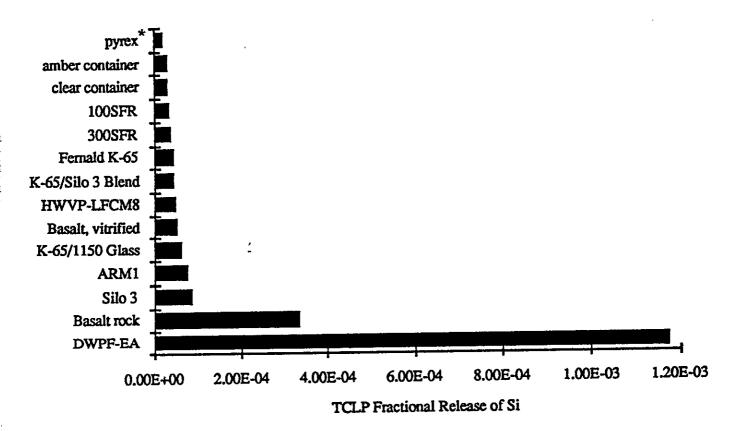
TOT TIET THE SOIT THES:						
Sample	Glass Density (g/cm³)	Glass Volume as a % of Initial Bulk Soil Volume				
· Surrogate	2.63	60				
100 Area [*]	2.6	63				
300 Area [*]	2.6	59				

*Estimated Density

Table 10. TCLP Fractional Release of Major Constituent Metals for Vitrified and Nonvitrified Soil Fines
From the 100 Area and 300 Area.

Source of Soil Fines	Material	Sample ID	Αl	Ca	Fe	Mg	Sī	Ti
100 Area	Soil	100 Soil	6.0E-05	7.3E-02	LD	1.3E-02	3.8E-04	LD
	Glass 1	100SFR1	LD	1.7E-04	6.3E-05	LD	3.3E-05	LD
	Glass 2	100SFR2	LD	2.5E-04	3.1E-04	LD	3.7E-05	LD
	Glass 3	100SFR3	4.8E-05	1.3E-04	1.9E-04	LD	3.3E-05	LD
300 Area	Soil	300 Soil	1.8E-03	7.1E-02	1.8E-05	1.95-02	2.3E-03	LD
	Glass 1	300SFR1	4.3E-05	1.5E-04	4.5E-04	LD	4.3E-05	LD
	Glass 2	. 300SFR2	3.4E-05	2.3E-04	2.1E-04	1.7E-04	3.6E-05	LD
	Glass 3	300SFR3	4.4E-05	2.5E-04	1.9E-04	1.8E-04	4.1E-05	LD

LD = TCLP result was less than detection limit


Significant leaching (compared with that of the vitrified product) of the radionuclides was observed from the untreated material. Using the data provided in Tables 3 and 12 and the fact that a slurry concentration of 50 g/L is used to perform the extraction (Appendix C), a mass balance can be calculated. About 0.15% of the ¹³⁷Cs and 0.7% of the ¹⁵²Eu was leached from the untreated 100 Area soil fines, while 200% of the reported uranium was leached from the 300 Area soil fines. Initially ⁶⁰Co and ¹⁵⁴Eu were present in smaller amounts and were below detection limits for the counting time used.

The leaching of uranium from the untreated waste seems to indicate a higher concentration in the soil fines than that reported in Table 3. The initial uranium concentrations reported in Table 3 for the 300 Area soil fines were a composite of data on several size fractions; however, discussion with the group that performed the sieving and analysis indicated that significant amounts of uranium were observed in the water used in the wet sieving process. Since the sample used in the vitrification tests had not been through this wet sieving process, it appears that its activity could be substantially higher than that calculated from the sieved size fractions. The high uranium concentrations in the TCLP leachate from the untreated 300 Area soil fines sample support the idea that substantial amounts of uranium could have been removed by the wet sieving process.

All isotopes were below detection limits in the leachate from the vitrified 100 Area soil fines. The leachate concentrations of ²³⁸U from the vitrified 300 Area soil fines represent a reduction in leaching of about 2,000 to 5,000 times relative to the unvitrified material. These results confirm the ability of the vitrified material to retain the radionuclides of concern and prevent their release to the environment.

The glass viscosity and electrical conductivity of these glasses were measured as a function of temperature. Figures 3 and 4 present the results of

Figure 2. TCLP Fractional Release of Silicon from Vitrified Soil-Washing Fines Compared to Other Natural and Man-made Glasses.

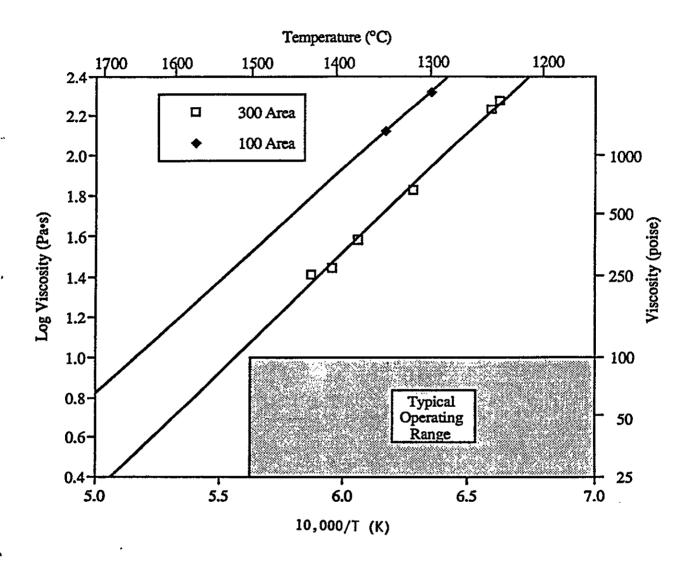
^{*} A trademark of Corning Glass Works, Corning, New York.

Table 11. TCLP Leachate Concentrations of Regulated Metals Present in the Soil Fines. (Arsenic, Mercury, and Selenium were not analyzed.

Other RCRA regulated metals were less than detection limit.)

		100 Area So	il Fines	
Element	Wt%	Leachate Concer	RCRA Regulatory Level*	
	Oxide in Waste	Vitrified	Level [^] (mg/L)	
Ba	0.12	0.467	LD	100
Cr	0.01	LD	5.0	
		300 Area Soi	1 Fines	·
Element	Wt% Oxide in Waste	Leachate Concer (mg/L)	tration	RCRA Regulatory Level* (mg/L)
	}	Nonvitrified	Vitrified	
Ba	0.15	9.580	0.014	100
Cr	0.04	0.122	L.D	5.0

Title 40, Code of Federal Regulations, Part 261.24 LD=Less than detection limit


Table 12. TCLP Leachate Concentrations of Various Isotopes for Vitrified and Nonvitrified Soil Fines from the 100 Area and 300 Area (pCi/L).

			1 0111 0110	100 .	11 CW W	114 500	m ca	(PC1/L/-	
Source of Soil Fines	Material	Sample ID	⁶⁰ co	90 _{\$r}	137 _{Cs}	152 _{Eu}	154 _{Eu}	238 _U	239/240 ₁
100 Area	Soil	100 Soil	<56	250*	37	200	<90		<20
	Glass 1,2, & 3	100SFR1,2,3	<4	<80	<4	<17	<10		<35
300 Area	Soil	300 Soil						60,500	
	Glass 1	300SFR1						13	
	Glass 2	300SFR2						30	
	· Glass 3	300sfR3						22	

⁻⁻ Not Analyzed

^{*}Assumes all beta activity except that from 137Cs and 152Eu was due to 90Sr

Figure 3. Glass Viscosity as a Function of Temperature.

Electrical Conductivity as

these measurements. These data show that the glass formulations used in these tests for the 100 and 300 Area soil fines require further development prior to processing. The viscosity of both glasses was higher than the typical maximum of 100 poise at operating temperatures, while the electrical conductivity was at the boundary of the typical process limits for a joule-heated glass melter (0.1 to 0.5 ohm⁻¹ • cm⁻¹). Both of these parameters can be brought within the typical operating ranges by increased flux additions (soda, calcia) in the formulations. Further refinement of the conductivity is achievable by adjusting the relative proportions of soda and calcia in the formulations. Leaching results from the surrogate melts demonstrate that substantial increases in the amount of soda and calcia added can be achieved without compromising the leach resistance of the glass.

5.0 SUMMARY AND CONCLUSIONS

The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction <0.25 mm in the 100 Area soil sample appears to differ somewhat from the bulk soil composition. The soil fines are readily melted into a homogeneous glass with the simple additions of CaO and/or Na₂O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils.

5.0 REFERENCES

- 40 CFR 261.24, 1993, "Identification and Listing of Hazardous Waste," Code of Federal Regulations, as amended.
- Buelt, J.L., C.L. Timmerman, K.H. Oma, V. Fitzpatrick, 1987, In Situ Vitrification of Transuranic Wastes: An Updated Systems Evaluation and Applications Assessment," PNL-4800, Suppl. 1, Pacific Northwest Laboratory, Richland, Washington.

- DOE-RL 1993, 300-FF-1 Operable Unit Remedial Investigation Phase II Report: Physical Separation of Soils Treatability Study, DOE/RL-93-96, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 1994, 100 Area Soil Washing Bench-Scale Tests, DOE/RL-93-107, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

APPENDIX A

SOIL FINES VITRIFICATION CRUCIBLE TESTS STATEMENT OF WORK

THIS PAGE INTENTIONALLY LEFT BLANK

P.O. Box 1970 Richland, WA 99352

August 20, 1993

9356804

Mr. R. A. Merrill Pacific Northwest Laboratory Post Office Box 999 Richland, WA 99352

Dear Mr. Merrill:

CRUCIBLE VITRIFICATION TESTS OF SOIL WASHING FINES

The attached statement of work and accompanying supplemental work order (ED3870) are being provided to you to complete crucible vitrification tests of soil washing fines. The two main purposes of these tests are to: 1) demonstrate the durability of the glasses using various combinations of additives; and 2) provide experimental evidence of the quality of the vitrified product using actual (contaminated) feed soils.

If you have any questions, please contact Mr. J. D. Ludowise of my staff on 376-6470.

Very truly yours,

J. G. Woolard, Manager

Environmental Engineering Support Group

t11

Attachment

9356804 Attachment

STATEMENT OF WORK

SOIL FINES VITRIFICATION CRUCIBLE TESTS STATEMENT OF WORK (WORK ORDER ED3870)

1.0 INTRODUCTION

This statement of work is for Pacific Northwest Laboratory (PNL) to conduct crucible scale vitrification tests of soil washing fines. The two main purposes of these test are to: 1) demonstrate the durability of the glasses using various combinations of additives; and 2) provide experimental evidence of the quality of the vitrified product using actual (contaminated) feed soils. This information will feed into the design of pilot scale ex situ vitrification tests (regardless of the melter type).

The Treatability Study Program Plan (DOE-RL 1992) identifies ex situ vitrification as a technology that requires treatability testing prior to selection as a method to stabilize the fines from soil washing. The Guide for Conducting Treatability Studies under CERCLA (EPA 1992) defines a protocol to acquire cost and performance data through treatability testing. This protocol is a three-tiered approach as follows:

- o Remedy screening testing to determine potential feasibility of a particular remedial technology
- o Remedy selection testing to develop performance and cost data to support focused feasibility studies and Records of Decision (RODs)
- o Remedial design/remedial action testing to develop detailed design and cost data to confirm performance (EPA 1992).

Each of these three tiers is progressively more focused and the size of the equipment used ranges from bench-scale to full-scale. Each tier of treatability testing has specific data objectives and associated analytical quality. The screening type tests are generally of a short duration, providing qualitative results at a lower level of quality assurance.

A series of crucible tests followed by batch tests and continuous runs is required for remedy screening/remedy selection of ex situ vitrification of soil washing fines. This is a common approach taken to evaluate the performance parameters and was followed at the Fernald site during evaluation of soil vitrification. The information obtained from the crucible tests identified below will support the development of batch/continues melter runs, which will be conducted at a higher level of quality assurance.

2.0 WORK SCOPE

The tests will be performed using both surrogate (non-contaminated) and actual (contaminated) soil wash fines. The surrogate will be non-contaminated soil washing fines from the Hanford Geotechnical Development and Test Facility in the 600 Area. The surrogate fines will be provided by WHC. Additionally, soil washing fines from the 300 Area Process Ponds and the 100 Area laboratory treatability test will be used in a limited number of tests. A total of about

2 kg of surrogate soil will be required and about 0.75 kg of contaminated soil from each of the contaminated sites will be required. The following is a brief outline of the tasks to be performed.

Task 1: Characterize the Soil Materials

Both the surrogate and actual waste materials will be analyzed for metals by inductively coupled plasma (ICP) spectroscopy before vitrification testing. This is necessary to verify that the composition of the soil washing fines is similar to the bulk Hanford soil and also to provide the data necessary for accurate calculation of elemental release during leach testing of the vitrified product. Crucible test melts have been carried out in the past on bulk Hanford soils. Such data may be directly applicable to soil washing fines vitrification if the composition of the fines is shown to be similar to that of the bulk soil. The data from the comparison (between bulk and soil wash fines) will also be used to determine the combination of additives that may be required in task 2.

Physical characterization of the materials will also be carried out (moisture content, bulk density) to allow determination of parameters such as the volume reduction and waste loading. Moisture content will be determined by drying at 105°C to constant weight and bulk density will be determined by measuring the volume occupied by a known mass of material.

Test to be performed:

2 samples for ICP analysis (surrogate)

1 sample for ICP analysis (100 Area soil)

I sample for ICP analysis (300 Area soil)

Task 2: Perform Vitrification Test

Samples for the surrogate material will be vitrified using up to 12 different formulations (combinations of additives). Existing data from crucible melts on bulk Hanford soil will be used and modified as needed based upon results of the characterization of the soil washing fines. Additions of Na₂O and CaO will be made in varying amounts covering the range of acceptable viscosity and conductivity observed in previous tests. Glass formulations will be designed to be high melting (1400°C to 1500°C) in order to maximize durability and minimize additives. Surrogate melts will also provide samples of vitrified material (such as glass buttons) for use as visual aids in demonstrating the quality of the vitrified product. The formulation judged to be best will be used in melts of the radioactive soil washing fines.

Three melts using the actual waste material will be carried out for each of the contaminated soil samples using the formulation arrived at in the surrogate tests. In one of these three melts, the furnace will be cooled on a controlled temperature profile to approximate the cooling rate of a large monolith of glass. This will allow comparison of the leaching of a slow-cooled (potentially devitrified) glass with the other two glassed cooled at a faster rate (presumed vitreous). Samples of these glasses will be archived for possible future analysis for crystallinity and crystalline phases.

Tests to be performed:

```
12 melts (surrogate soil)
3 radioactive melts (100 Area soil)
3 radioactive melts (300 Area soil)
```

Task 3: Perform Leach Testing

The vitrified product will be evaluated for durability using the Toxicity Characteristic Leaching Procedure (TCLP) slightly modified to improve the applicability of the data for use as a measure of glass durability. The main modification of the TCLP is the use of a specific size fraction of crushed glass (-4mm/+1mm), which provides a better defined sample surface area for leaching. Leachate from the surrogate and actual glasses will be analyzed for metals by ICP and the fractional release for each element determined. Additionally, the leachate from the radioactive glasses will be analyzed for the predominant nuclides in the wastes.

Test to be performed:

```
12 non-radioactive TCLP with metals analysis by ICP 6 radioactive TCLP with metals analysis by ICP 6 isotopic analyses on the TCLP leachate by gamma spectroscopy (60Co. Sr 137Cs, 152Eu, and 154Eu, and 239/240Pu for 100 Area soil; 235U and 238U for 300 Area soil)
```

Task 4: Conductivity and Viscosity Analysis

The viscosity and electrical conductivity as a function of temperature will be measured for one of each of the radioactive melts. The viscosity will be measured by a rotating spindle method and the conductivity will be determined by measuring the resistance between platinum electrodes submerged in the molten glass. The conductivity and viscosity are important parameters in determining the processability of the glass. The conductivity must be in the correct range to allow joule-heating of the molten glass, while the viscosity affects the ability to process the waste (melt rate, mixing in and removal from the melter).

Tests to be performed:

Viscosity and conductivity for two radioactive melts (1 each of the 100 and 300 area soils).

Tasks 5: Data Analysis and Report

The data obtained will be analyzed and summarized and a letter report prepared and transmitted to WHC. The report shall be written and formatted as a WHC-SD-TI-XX supporting document. A disk copy of the final report shall also be submitted upon completion. Copies of data collected during testing shall be included either as attachments to the report, or submitted separately to WHC. The report will include:

o An introduction and description of the tests

- o Results of material characterization (composition, bulk density, moisture content)
- Results of surrogate testing (formulation tested, melt observations, TCLP results)
- o Results of actual material tests (formulations, viscosity and conductivity as a function of temperature, TCLP results for major elements and isotopes)
- o Summary and conclusions.

Most of the data will be presented in the form of tables and figures accompanied by a brief written discussion of the content. The results of the tests will be discussed and summarized in the summary and conclusions section.

3.0 Deliverables/Schedule

	Dura- tion,			Fis	scal Yea	ır 93			
Task W	Weeks Start	End	8-15	8-22 8-29	9-5	9-12	9-19	9-26	!
			MTWTFS	MTWTFS MTWTFS	MTWTFS	MTWTFS	MTWTFS	MTWTFS	į
1 Characterize Soil Materials	1 16-Aug-93	20-Aug-93							i
2 Perform Vitrification Tests	2 23-Aug-93	03-Sep-93							į
3 Perform Leach Testing	2 30-Aug-93	10-Sep-93	1 1						į
4 Cond. and Viscosity Analysis	s 2 13-Sep-93	24-Sep-93				******			
5 Data Analysis and Report	1 27-Sep-93		1						

4.0 MATERIALS AND WASTE DISPOSAL

Waste materials generated during the test shall be handled by PNL. Vitrified samples will be archived and kept until it is apparent that no further analyses are required, after which they will be disposed of by PNL. PNL will check with WHC prior to disposing of samples.

5.0 COST ESTIMATES

The work described in this statement of work will be charged to Work Order ED3870. The cost estimate is broken down as shown below:

Task 1: Characterize the Soil Materials	\$ 2.0K
Task 2: Perform Vitrification Tests	5.0K
Task 3: Perform Leach Testing	6.0K
Task 4: Conductivity and Viscosity Analysis	5.0K
Task 5: Data Analysis and Report	·5.0K
Materials/Waste Disposal	2.0K
Total Cost of Proposed Work	25.0K

6.0 QUALITY ASSURANCE

Work on this project will be carried out as PNL Impact Level III and will comply with the GPS Standards located in Part 2 of PNL-MA-70. Laboratory notebooks will be used to record the experimental activities carried out under this scope of work.

7.0 POINT OF CONTACT

The WHC technical point of contact of work performed under this statement of work is J. D. Ludowise (telephone 376-6470).

8.0 REFERENCES

- DOE-RL, 1992, Treatability Study Program Plan, DOE/RL-92-48, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- EPA, 1992, Guide for Conducting Treatability Studies under CERCLA, EPA/540/R-92/071a, U.S. Environmental Protection Agency, Washington, D.C.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

ANALYTICAL DATA

THIS PAGE INTENTIONALLY LEFT BLANK

BULK DENSITY DATA SHEET

PNL Procedure: AMT-02 Rev. 0

Date: 8/23/13	Analyst(s): PA Menil
Balance #: 452-01-001	

ì		, 	2	3	
	Sample	1 Mass of Cylinder (g)	Mass Cylinder + Sample (g)	Sample	Bulk Density (g/cm^3) = (2 - 1) / 3
	SF-A	55.52	86.73	21.0	1.4862
	SF-B	t,	85.39	20,4	1,46 42
	SF-C	Lı	86,10	20.6	1,4845
F					Aug. 1.478 ± ,012
	:			:	
		,			
				,	
-					
-					
L	<u></u>		L		

BULK DENSITY DATA SHEET

PNL Procedure: AMT-02 Rev. 0

Date: Balance #	: 9/8/93 :		Analyst(s):	Cene Welthington	-,_
Sample	Mass of Cylinder (g)	2 Mass Cylinder + Sample (g)	3 Sample Volume (mL)	Bulk Density (g/cm^3) = (2 - 1) / 3	
PSF 100 Area Sol Fines	90.4	148.8	37.0	1.50	
300 Area SulFres	(69,	(g sail)	41mL	1.70	Fram 8N 1055211 1911 724mm
	1				1/7/14
					1
					-
				•	
					-
					1
				<u></u>	1

MOISTURE CONTENT DATA SHEET

PNL Procedure: AMT-03 Rev. 0

	Da	te: 8/23/93		Analyst(s):	RA Menill
	Balance	#: 452 -06-01-00	1 (Meyl, PC 200	5 46210	
تصياده	of 600 Arra Ove	en: Bluc M Pont W	A 72581	_ TC#592	
mitro	of 600 Area Ove	·		Readout 7	7-69990 Exp 5/43
- 1				Mass Dry	
- 1			Mass Dish +	Sample + Dish	
1	Sample	Mass Dish (g)	Sample (g)	(g)	% Moisture
<u>.</u>	SF-A	1,349	22.94	22.43	2.3611
2	SF-B	1,329	27.74	27.16	2,20-2,1953
3	SF-C	1.325	27.69	△쿠.1 년	2,0857
4					hy. 2.214 ± 0.139
5					

Mass (g) of Samples as a Function of Time

			Sample		
Time (hr)	1	2	3	4	5
8:30 Start			1		1
9:35	22.44	27.16	27.12		
(0:,34	22.43	27.16	27.14		
100 Area Soil Fines	1.0%	From LRB BNU	455211 pg 7	Messwad with me	esture balance
300 Area Sal Fines	18.6%	Frances BNW	55211 pg 11	tt n	. 9
			pour		
			117/14		
					
					
		 			

53
X
M
Ą
ΥE
EE
OAT
S SURROGATE BY
55
ш
H FIR
NS.
1.7
Š
SO
X
MALY
Z
ž
SITT
Pos
SOME
ILTS OF COMPOSITION
ž
RESULTS
2

ICP Results (uncorrected)

Results (corrected) for Soil Wash Pines Surregate

Average Corrected Wiff, Oxide Soil Fines Surrogate

•	1	•	_						_	_				_								_
ğ	L	Ne202	£.09	3.17	12.74	2.6	X	7.5	2.86	1,12	ğ	0.12	용	60	9.15	8	g	á	900	•	3	
_	2	Na202	39.76		12.58	100	8	3.59	111	13	3	Q13	80	g	913	ð	500	9		***	į	96.76
for Soil Wath Pines Surveste	8	KOH	\$2.37	707	35	7.33	\$		242	1,33	3	043	8	417	ğ		ĝ	6	900		ì	1130
E Dog	F			_	_	_				_	_	_		_			_	_			_	
Ž.	6	Q.S	52.15		100	3	\$	2	7,5	2	3	8		3	9	3	S	8		1	2	57.73
inos as	Ŋ	HON	\$	1711	131	346	F.		8	032	3	7,0	20	0.16				ă				61.77
_	Г	3	3	ź	₹	ď.	ð	M	ž	Ē	•	ž	Z	=	ź	Σ	1	3	2		ſ	ž

	КОН	60.03	7	13.06	3	22	35	7.7	1.52	99.0	9	충	8	0.16	90	5	800	00	900			33
243	CR LOS	is.	ź	₹	£	ಶ	×	ž	F	Д.	PR	£	_	묫	Ē		3	72	E C	Intal(so Na)	Na Connect	Other on idea
	100 N	92.66	3.17	12.58	7	8,5	35	277	1.78	કુ	613	800	500	918	충	饠	3	900	1000	3	3.17	
	KOH	51.45	3,17	12.23	13	3	ž	ร	1,42	9970	0,42	3	さ	9,12	5 00	900	600	90.0	1000			2
E8	Calife	3	ź	₹	£	đ	×	ž	F	۵,	Ž	£	_	£	Z	2	=	Z	7			Other Bar
	N4202	60.29	S.E.	1274	3	X,	2	7.8	1.12	\$	Q.12	8	69	9.	8	g	8	800	98	_		3

with	60.38																	180	
ST IN	S	₹	足	đ	ž	×	X	=	8									7	
nt.S	8638	1265	96	17.5	3.17	3,07	243	1.64	65	9	610	0.17	0.13	9	8	603	900	1000	
2	ŝ	₹	武	ਰ	Ž	×	ž	F	Δ.	矛	£	Ę	æ	Z	3	3	7	1 00	

Na Cocanci	r oxides 93.2	
1000		
7		
1		

res escumed that the Na202 fasion for \$F2 was completely accurate. This is based on the observed silks numbers and the recovery vet. The wrife skoonish was secured to be equal to that of the KOH fusion and the sock was obtained by difference from 100%. a KOH fusion for \$F2 was consociated by assuming the Na wrife desaminated above and the K and Ni wrife desaminad in the NA202 ware corriect. The other alsonates were normalized so the total outlie consists was 100%. a NA202 fusion for \$F2 was connected by assuming the Na and Z2 wrife from its m. I above were correct. The other elements were 100 - (Na,Zz). a KOH fusion for \$F2 was connected in the sense manner as item 2 above. The K and Ni data were from the councied NA202 fusion i, the Zz dete was taken from the KOH fusion of \$F2. The other caldes were 100 - (Na, K, Ni).	russ comments are not mercent was no my a suppress the scale cultural yes one principles and pressive and constructing the colorest results of the method weed to making the date.
The KOH fusion for SF2 was concented by sesting the Na wife determined above said the K and Ni wife determined in the Na202 as were correct. The other elements were normalized so the total cuttle content was 100%. The Na202 fusion for SF1 was concentral by sestiating the Na and Za wife from item 1 above were correct. The other elements were nationed as the total eaties content was 100%. The other cuttles were 100 - (Ns.Zz). The KOH fusion for SF1 was convected in the series manner as item 2 above. The Kind Mans were from the corrected Na202 fusion. Ft, the Zz dess was taken from the corrected of SF2. The other eaties were 100 - (Ns.K.Nt).	 It was secured that the No202 fusion for SF2 was completely accurate. This is based on the observed silica numbers and the recovery achieved. The wrife absonals was secured to be equal to that of the KOH fusion and the socia was obtained by difference from 100%.
The NAOCS fission for SFN was corrected by assenting the Na and Zr wife from hean I show were correct. The other almosts were marked so the total eatile consent was 100%. The other cutdes were 100 - (Na,Zr). The KOH fusion for SFN was corrected in the same manner as least 2 above. The K and NI data were from the corrected NAOCS fusion. SFN, the Zz data was states from the corrected NAOCS fusion.	 The KOH finites for RF2 was consucted by sestabling the Na w1% desarrational above and the K and N1 w1% desarrationd in the Na2O2 finites were cornect. The other alternate were normalized so the total cutter connect was 100%.
4. The KOH fistion for SF1 was corrected in the series manner as hen 2 above. The K and NI data was from the cornorad Ni2O2 fistion, of SF1, the Zs data was taken from the KOH thelon of SF2. The other exists were 100 - (Ns, K, Ni).	3. The Na2O2 fasion for SF1 was connected by seemaking the Na and Z2 w75 from hean I shows were connect. The other elements were normalized so the total earlier connect was 100%. The other oxides were 100 - (Ne,Z2),
	The KOH faston for SF1 was corrected in the same meaner as ison 2 above. The Kard Ni deas were from the corrected NA2O2 fastor SF1, the Z4 data was baken from the KOH faston of SF2. The other existes were 100 - (M4, K, ND.

WHC-SD-EN-TI-240, Rev. 0 S. I Five Surroyate

ICP ANALYSIS ON FUSED SAMPLES

Analytical and Process Support Laboratory

1.0 ICP Analysis

The solutions from the fused samples were analyzed on the ICP at 324 Building

2.0	Lab No	1419-93		1419-	93
3.0	Customer	Merrill		Merri	11
4.0	Customer's ID	SF-1	400 Aron SF Surrogate	SF-1	
5.0	Fusion Method	KOH Na202_		кон	Na202
6.0	Sample Wt	0.3132 g 0.3096	g	0.3132 g	0.3096 g
7.0	Dilution	2500 mt 2500	m1	2500 mL	2500 ml

8.0

	Wt %	Wt %
Element	Dement	Element
Ag	-0.004%	-0.004%
Al	4.220%	5.833%
В	0.049%	0.018%
8a	-0.002%	0.066%
8e	-0.002%	-0.002%
Bi A	0.093%	-0.048%
Ç=	2.706%	3.672%
Cd	-0.005%	-0.005%
Ca ≱	0.193%	-0.032%
Co	-0.008%	-0.008%
Cr	-0.016%	-0.016%
Cu	-0.005%	-0.005%
Đγ	-0.005%	-0.005%
Eu	-0.003%	-0.003%
Fe	3.819%	5.832%
K		1.823%
La ≸	0.045%	0.014%
U	0.020%	0.011%
Mg	1.145%	1.494%
Mn	0.074%	0.101%
Mo	-0.008%	-0.008%
Na	9.036%	
Nd #	0.238%	0.087%
Ni		0.030%
Р	0.187%	0.180%
Pb	0.211%	-0.065%
S	0.086%	-0.065%
Si '	18.734%	24.378%
Sn	-0.064%	-0.065%
Sr	-0.002%	-0.002%
Te	-0.008%	-0.008%
Π	0.554%	0.945%
٧	-0.008%	-0.008%
Υ	-0.002%	-0.002%
Zn	-0.008%	-0.008%
Zr	0.030%	
ub-total =	41,44%	44.48%

	Zr_		0.030%		
9.0	Sub-tota	=	41,44%		44,48%
		K-	1.823%		9.036%
		Ni =	0.030%	Z r	0.030%
10.0	Total	-	43.29%		53.55%
11.0	Note: Ti	s KOH f	usion is perfo	rmed i	n a nickel met

				Average	Percent	1
	Wt %		Wt %	Wt %	Deviation	
Oxide	Oxide		Oxide	Oxide	Oxide	
Ag2O	-0.004%		-0.004%	0.00%	-1%	j
A1203	7.974%		11.022%	9.50%	-32%	4
B2O3	0.159%		0.057%	0.11%	94%]
BaO	-0.003%		0.074%	0.04%	-215%]
BeO	-0.007%		-0.007%	-0.01%	-1%]
Bi2O3	0.104%		-0.054%	0.03%	632%]
CaO	3.786%		5.139%	3.79%		Le
CdO	-0.005%		-0.006%	-0.01%	-1%	1
CeO2	0.237%		-0.040%	0.10%	280%	1
Co2O3	-0.011%	,	-0.011%	-0.01%	-1%	1
Cr203	-0.023%		-0.024%	-0.02%	-1%	1
CuO	-0.006%		-0.006%	-0.01%	-1%	1
Dy203	-0.005%		-0.006%	-0.01%	-1%	1
Eu203	-0.004%		-0.004%	0.00%	-1%	1
Fe2O3	5.460%		8.337%	6.90%	-42%	40
K20			2.195%	2.20%		OK
La203	0.053%		0.017%	0.03%	105%	1
Li2O	0.044%		0.024%	0.03%	57%	1
MgO	1.900%		2.478%	2.19%	-26%	OK
MnO	0.117%		0.159%	0.14%	-31%	1
MoO3	-0.012%		-0.012%	-0.01%	-1%	1
Na2O	12.180%			12.18%		н,
Nd2O3	0.277%		0.101%	0.19%	93%	1
NiO			0.038%	0.04%		1
P205	0.428%		0.413%	0.42%	4%	1
PbO	0.228%		-0.070%	0.08%	376%	1
SO3	0.216%		-0.161%	0.03%	1387%]
SiO2	40.075%		52.149%	46.11%	-26%	Lo
SnO2	-0.081%		-0.082%	-0.08%	-1%	1
SrO	-0.003%		-0.003%	0.00%	-1%	1
TeO2	-0.010%		-0.010%	-0.01%	-1%	1
TiO2	0.924%		1.576%	1.25%	-52%	40
VO2	-0.013%		-0.013%	-0.01%	-1%	1
			-0.003%	0.00%	-1%	1
Y203	-0.003%					
Y203 ZnO	-0.003% -0.010%		-0.010%	-0.01%	-1%	1
			-0.010%	-0.01% 0.04%	-1%	
ZnO	-0.010%		-0.010% 82.426%		-1%	

tal crucible. Thus potassium and nickel reported are values obtained from the Na2O2 /Zr fusion. The Na2O2 fusion is performed in zirconium metal crucible. Thus the Zr and Na reported are values obtained from the KOH/Ni fusion.

12,0 Comment;

At low concentration of Ca, the Na2O2 fusion is not included in the average value.

Negative values reported in this procedure are at or below the estimated detection limit for the ICP/AES procedure.

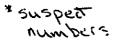
NiO =

Total =

0.038%

76.4%

Zr02 =


0.040%

94.6%

85.5%

12.0 Calculated by and date

13.0 Approved by and date

8.0

9.0

ICP ANALYSIS ON FUSED SAMPLES

Analytical and Process Support Laboratory

1.0 Lab No 1419-93 2.0 Customer Merrill 600 Arca SF Sungete Customer's Sample ID SF-1 3.0 4.0 **Fusion Method** KOH Na202 5.0 0.3132 0.3096 Sample Wt 2500 6.0 Dilution 2500

7.0 ICP Analysis

The fusions were performed by the Analytical and Support Laboratory.

The solutions from the fused samples were analyzed on the ICP at 324 Building.

	Bement	KOH Wt %	Element	Ne202 Wt%		Conversion	KOH Wt%		Na202 Wt%
Element	Conc (ug/mL)	Bernent	Cone (ug/mL)	Element	Oxide	Factor	Oxide		Oxide
Ag		-0.004%		-0.004%	ΑgΟ	1.07428	-0.004%		-0.004%
Al	5.287	4.220%	7.224	5.833%	A1203	1.88955	7.974%		11.022%
В	0.0618	0.049%	0.022	0.018%	B203	3.22017	0.159%		0.057%
Ba		-0.002%	0.0816	0.066%	BaO	1.1165	-0.003%		0.074%
Be		-0.002%		-0.002%	SeO.	2.77519	-0.007%		-0.007%
84	0.1169	0.093%		-0.048%	Bi203	1.11484	0.104%		-0.054%
Ca	3.39	2.706%	4.548	3.672%	CaO	1.3992	3.786%		5.139%
Cd		-0.005%		-0.005%	CdO	1.14235	-0.005%		-0.006%
Ce	0.2418	0.193%		-0.032%	Ce02	1.22845	0.237%		-0.040%
Co		-0.008%		-0.008%	Co203	1.40726	-0.011%		-0.011%
Cr		-0.016%		-0.016%	Cr203	1.46184	-0.023%		-0.024%
Cu		-0.005%		-0.005%	CuO	1.25169	-0.006%		-0.006%
Dy		-0.005%		-0.005%	Dy203	1.14769	-0.005%		-0.006%
Eu		-0.003%		-0.003%	Eu203	1.15794	-0.004%		-0.004%
Fe	4.785	3.819%	7.222	5.832%	Fe203	1.42963	5.480%		8.337%
ĸ	352.4		2.257	1.823%	K20	1.2046			2.195%
l.e	0.0569	0.045%	0.0176	0.014%	La203	1.17277	0.053%		0.017%
Li	0.0254	0.020%	0.0139	0.011%	Li20	2.15274	0.044%		0.024%
Mg	1,435	1.145%	1.85	1.494%	MgO	1.65858	1.900%		2.478%
Mo	0.0926	0.074%	0.1246	0.101%	MnO	1.58245	0.117%		0.159%
Mo		-0.008%		-0.008%	MoO3	1,50042	-0.012%		-0.012%
Na	11.32	9.035%	378.9		N=20	1.34798	12.180%		
Nd	0.2978	0.238%	0.1075	0.087%	Nd203	1.16639	0.277%		0.101%
Ni	0.7072		0.0369	0.030%	NiO	1.27253			0.038%
P	0.2338	0.187%	0.223	0.180%	P205	2.29128	0.428%		0.413%
Pb	0.2648	0.211%		-0.065%	РЬО	1.0777	0.228%		-0.070%
S	0.1082	0.085%	0.0427	-0.065%	SO3	2.49673	0.216%		-0.161%
Si	23.47	18.734%	30.19	24.378%	SiO2	2.13914	40.075%		52.149%
Sn		-0.064%		-0.065%	SnO2	1.26961	-0.081%		-0.082%
Sr		-0.002%		-0.002%	SrO	1.18272	-0.003%		-0.003%
Te		-0.008%		-0.008%	TeQ2	1.25078	-0.010%		-0.010%
Τi	0.6943	0.554%	1.17	0.945%	1102	1.66806	0.924%		1.576%
٧		-0.008%		-0.008%	VO2	1.62819	-0.013%		-0.013%
Y		-0.002%		-0.002%	Y203	1.26988	-0.003%		-0.003%
Zn		-0.008%		-0.008%	ZnO	1.24476	-0.010%		-0.010%
Zr	0.0372	0.030%	8.174		Zr02	1.3508	0.040%		
	Sub-total =	41.44%		44.48%	S	iub-total =	74.202%		83.778%
	Plus K =	1.823%	Plus He =	9.036%		Plus K20	2.195%	Plus Ne2O2	12.180%
	Plus Ni=	0.030%	Plus 2r=	0.030%		Plus NiO	0.038%	Plus ZrO2	0.040%
	Total =	43.29%	0	53.55%		Total =	78.435%		95.998%
Notes The	YOU fusion is a		obel metal coucille		m and nickel		101-100 (8		

10.0 Note: The KOH fusion is performed in a nickel metal crucible. Thus potassium and nickel reported are values obtained from the Na2O2 /Zr fusion. The Na and Zr reported on the Na2O2/Zr crucible are values obtained from the KOH/Ni fusion.

Operator: kíw

Method: GEN Sample Name: SF-1 1448.93

Run Time: 09/03/93 11:23:32 Comment: KOH .3132 2500

						-	=
Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	.0376	5.287	.0618	.0675	.0017	.1169	3.390
SDev	.0003	.039	.0010	.0026	.0000	.0067	.036
%RSD	.9294	.7367	1.693	3.784	.0339	5.758	1.050
#1	.0379	5.256	.0612	.0646	.0017	.1198	3.356
#2	.0372	5.274	.0630	.0687	.0017	.1092	3.386
#3	.0375	5.330	.0612	.0693	.0017	.1217	3.427
Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
Avge	.0110	.2418	.0359	.0408	.0181	.0315	.0089
SDev	.0003	.0005	.0002	.0008	.0000	.0002	.0001
%RSD	3.062	.2250	.4432	1.953	.0000	.5751	.9676
#1	.0107	.2419	.0360	.0414	.0181	.0313	.0089
#2	.0113	.2424	.0360	.0411	.0181	.0316	.0090
#3	.0110	.2413	.0358	.0399	.0181	.0316	.0089
Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
Avge	4.785	352.4	.0569	.0254	1.435	.0926	.0306
SDev	.042	3.2	.0008	.0021	.011	.0008	.0008
%RSD	.8830	.9184	1.342	8.087	.7541	.8759	2.703
#1	4.743	349.1	.0577	.0231	1.425	.0918	.0313
#2	4.783	352.4	.0562	.0268	1.435	.0925	.0297
#3	4.828	355.6	.0569	.0265	1.446	.0934	.0307
Elem	Na5889	Na3302	Nd1061	Ni2316	P_1782	Pb2203	s_1820
Avge	8.367	11.32	.2978	.7072	.2338	.2648	.1082
SDev	.096	.17	.0022	.0024	.0192	.0043	.0052
%RSD	1.151	1.534	.7317	.3419	8.224	1.605	4.774
#1	8.340	11.36	.2998	.7061	.2159	.2599	.1029
#2	8.474	11.47	.2980	.7056	.2541	.2677	.1087
#3	8.287	11.13	.2955	.7100	.2314	.2668	.1132
Elem	Si2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710
Avge	23.47	.0812	.0304	.1258	.6943	.0483	0343
SDev	.20	.0011	.0003	.0070	.0065	.0002	.0008
%RSD	.8569	1.366	.8646	5.555	.9283	.3274	2.262
#1	23.28	.0809	.0301	.1273	.6882	.0481	0351
#2	23.46	.0824	.0305	.1181	.6937	.0484	0340
#3	23.68	.0802	.0306	.1319	.7010	.0484	0336
Elem Avge SDev %RSD	Zn2138 .0154 .0002 1.090	Zr3391 .0372 .0009 2.435					,
#1 #2 #3	.0153 .0156 .0155	.0362 .0376 .0379					
	CO. CO. CO. CO. CO. CO. CO. CO.	Mode: CONC Corr. Elem Ag3280 Avge .0376 SDev .0003 %RSD .9294 #1 .0379 #2 .0372 #3 .0375 Elem Cd2288 Avge .0110 SDev .0003 %RSD 3.062 #1 .0107 #2 .0113 #3 .0110 Elem Fe2599 Avge 4.785 SDev .042 %RSD .8830 #1 4.743 #2 4.783 #3 4.828 Elem Na5889 Avge 8.367 SDev .096 %RSD 1.151 #1 8.340 #2 8.474 #3 8.287 Elem Si2881 Avge 23.47 SDev .096 %RSD 1.151 #1 8.340 #2 8.474 #3 8.287 Elem Si2881 Avge 23.47 SDev .096 %RSD .8569 #1 23.28 #2 23.46 #3 23.68 Elem Zn2138 Avge .0154 SDev .0002 %RSD 1.090 #1 .0153 #2 .0156	Elem Ag3280 Al3082 Avge .0376 5.287 SDev .0003 .039 %RSD .9294 .7367 #1 .0379 5.256 #2 .0372 5.274 #3 .0375 5.330 Elem Cd2288 Ce4186 Avge .0110 .2418 SDev .0003 .0005 %RSD 3.062 .2250 #1 .0107 .2419 #2 .0113 .2424 #3 .0110 .2413 Elem Fe2599 K_7664 Avge 4.785 352.4 SDev .042 3.2 %RSD .8830 .9184 #1 4.743 349.1 #2 4.783 352.4 #3 4.828 355.6 Elem Na5889 Na3302 Avge 8.367 11.32 SDev .096 .17 %RSD 1.151 1.534 #1 8.340 11.36 #2 8.474 11.47 #3 8.287 11.13 Elem Si2881 Sn1899 Avge 23.47 .0812 SDev .20 .0011 %RSD .8569 1.366 #1 23.28 .0809 #2 23.46 .0824 #3 23.68 .0802 Elem Zn2138 Zr3391 Avge .0154 .0372 SDev .0002 .0009 %RSD 1.090 2.435 #1 .0153 .0362 .0376	### ### ##############################	### ### ### ### ### ### ### ### ### ##	Elem	Second Concord Corr. Factor: 1

Method: GEN Sample Name: SF-1 1448-93 Operator: kiw

Run Time: 09/03/93 11:12:02 Comment: NA202 .3096 2500 Mode: CONC Corr. Factor: 1

Avge0209 7.224				-				
#2	Avge SDev	0209 .0016	7.224 .048	.0220 .0027	.0816 .0005	.0062 .0002	.0385 .0027	Ca3179 4.548 .018 .3953
Avge	#2	0206	7.241	.0207	.0817	.0063	.0409	4.529 4.565 4.550
#1	Avge SDev ™%RSD	.0266 .0010	0282 .0048	.0087 .0011	.0228 .0017	0051 .0007	.0058 .0011	Eu3819 .0028 .0002 6.186
Elem Fe2599 K_7664 La3988 Li6707 Mg2790 Mn2576 M 7.222 2.257 .0176 .0139 1.850 .1246 . SDev .035 .293 .0019 .0017 .005 .0009 . %RSD .4906 12.97 10.97 12.24 .2527 .7353 5 #1 7.181 2.548 .0191 .0157 1.845 .1236 . #2 7.242 2.262 .0182 .0138 1.854 .1253 . #3 7.243 1.962 .0154 .0123 1.851 .1249 . Elem Na5889 Na3302 Nd4061 Ni2316 P_1782 Pb2203 S Avge 378.9 341.3 .1075 .0369 .2330 .0751 . SDev 2.6 1.7 .0066 .0028 .0103 .0062 . %RSD .6788 .4866 6.123 7.519 4.428 8.196 1 #1 376.4 339.4 .1140 .0388 .2438 .0786 . #2 378.7 342.5 .1077 .0381 .2321 .0787 . #3 381.5 341.9 .1009 .0337 .2232 .0680 . Elem Si2881 Sn1899 Sr4215 Te2142 Ti3349 V_2924 Y Avge 30.19 .0667 .0462 .0511 1.170 .0342 . SDev .14 .0029 .0004 .0088 .008 .0009 . %RSD .4591 4.337 .7758 17.17 .6495 2.561 . #1 30.03 .0669 .0458 .0578 1.161 .0345 . #2 30.26 .0695 .0463 .0412 1.174 .0348 . #3 30.28 .0638 .0465 .0544 1.175 .0332 .	#1 	.0272	0271	.0093	.0231	0051	.0057	.0029 .0029 .0026
#2	Elem Avge SDev	7.222 .035	2.257 .293	.0176 .0019	.0139 .0017	1.850 .005	.1246 .0009	Mo2020 .0116 .0006 5.403
Avge 378.9 341.3 .1075 .0369 .2330 .0751 . SDev 2.6 1.7 .0066 .0028 .0103 .0062 . %RSD .6788 .4866 6.123 7.519 4.428 8.196 1 #1 376.4 339.4 .1140 .0388 .2438 .0786 . #2 378.7 342.5 .1077 .0381 .2321 .0787 . #3 381.5 341.9 .1009 .0337 .2232 .0680 . Elem Si2881 Sn1899 Sr4215 Te2142 Ti3349 V 2924 Y Avge 30.19 .0667 .0462 .0511 1.170 .0342 - SDev .14 .0029 .0004 .0088 .008 .0009 %RSD .4591 4.337 .7758 17.17 .6495 2.561 . #1 30.03 .0669 .0458 .0578 1.161 .0345 - #2 30.26 .0695 .0463 .0412 1.174 .0348 - #3 30.28 .0638 .0465 .0541 1.175 .0332 - Elem Zn2138 Zr3391 Avge .0171 8.174 SDev .0002 .048 %RSD .9124 .5846	#2	7.242	2.262	.0182	.0138	1.854	.1253	.0109 .0117 .0121
#2 378.7 342.5 .1077 .0381 .2321 .0787 . #3 381.5 341.9 .1009 .0337 .2232 .0680 . Elem Si2881 Sn1899 Sr4215 Te2142 Ti3349 V_2924 Y Avge 30.19 .0667 .0462 .0511 1.170 .0342 - SDev .14 .0029 .0004 .0088 .008 .0009 %RSD .4591 4.337 .7758 17.17 .6495 2.561 . #1 30.03 .0669 .0458 .0578 1.161 .0345 - #2 30.26 .0695 .0463 .0412 1.174 .0348 - #3 30.28 .0638 .0465 .0544 1.175 .0332 - Elem Zn2138 Zr3391 Avge .0171 8.174 SDev .0002 .048 %RSD .9124 .5846	Avge SDev	378.9 2.6	341.3 1.7	.1075 .0066	.0369 .0028	.2330 .0103	.0751 .0062	S_1820 .0427 .0073 16.99
Avge 30.19 .0667 .0462 .0511 1.170 .0342 - SDev .14 .0029 .0004 .0088 .008 .0009 %RSD .4591 4.337 .7758 17.17 .6495 2.561 . #1 30.03 .0669 .0458 .0578 1.161 .0345 - #2 30.26 .0695 .0463 .0412 1.174 .0348 - #3 30.28 .0638 .0465 .0544 1.175 .0332 - Elem Zn2138 Zr3391 Avge .0171 8.174 SDev .0002 .048 %RSD .9124 .5846	#2	378.7	342.5	.1077	.0381	.2321	.0787	.0474 .0464 .0344
#2 30.26 .0695 .0463 .0412 1.174 .0348 - #3 30.28 .0638 .0465 .0544 1.175 .0332 - Elem Zn2138 Zr3391 Avge .0171 8.174 SDev .0002 .048 %RSD .9124 .5846	Avge SDev	30.19 .14	.0667 .0029	.0462 .0004	.0511 .0088	1.170 .008	$.\overline{0}342$ $.0009$	Y_3710 0349 .0003 .8132
Avge .0171 8.174 SDev .0002 .048 %RSD .9124 .5846	#2	30.26	.0695	.0463	.0412	1.174	.0348	0346 0350 0351
#1 .0173 8.119	Avge SDev	.0171 .0002	8.17 1 .048					
#2 .0171 8.198 #3 .0170 8.205	#2	.0171	8.198					

WHC-SD-EN-TI-240, Rev. 0-600 Arca Sal Fires Sumgate - Duplicate

ICP ANALYSIS ON FUSED SAMPLES

Analytical and Process Support Laboratory

1.0 ICP Analysis

The solutions from the fused samples were analyzed on the ICP at 324 Building

2.0	Lab No		1419-9	3		_		1419-9:	3	_
3.0	Customer		Merrill			سلس أرسوم		Merritt		_
4.0	Customer's ID		SF-2		- 600 Avec -	. SFSurroyati		SF-2		_
5.0	Fusion Method	КОН		Na202			кон		Na202	
6.0	Sample Wt	0.3096	- , -	0.3126		-	0.3096	_,	0.3126	_9
7.0	Dilution	2500		2500	mL	-	2500	mL	2500	mL
8.0	Analysis				_					·- <u></u> -

	Wt %	
Element	Element	
Ag	-0.004%	-4
Al	6.031%	•
В	0.053%	
Ba	-0.002%	4

	Wt %	Wt %
Element	Element	Element
Ag	-0.004%	-0.004%_
Al	6.031%	6.656%
В	0.053%	0.010%
Ba	-0.002%	-0.002%
Be	-0.002%	-0.002%
Bi X	0.172%	-0.048%
Ca	3.245%	4.215%
Cd	-0.005%	-0.005%
Co ≰	0.323%	-0.032%
Co	-0.008%	-0.008%
Cr	-0.016%	-0.016%
Cu	-0.005%	-0.005%
Dy	-0.005%	-0.005%
Eu	-0.003%	-0.003%
Fe	5.161%	6.563%
К		2.984%
Le	0.079%	0.016%
<u>u</u>	0.033%	0.006%
Mg	1.457%	1.672%
Mn	0.088%	0.111%
Mo	-0.008%	-0.008%
Na	5.245%	
Nd	0.399%	0.111%
Ni		0.034%
P	0.251%	0.219%
Pb	0.275%	0.077%
S	0.141%	-0.064%
Si	24.483%	27.935%
Sn	0.101%	-0.064%
Sr	-0.002%	-0.002%
Te ¥	0.163%	0.052%
Ti	0.795%	1.069%
V	-0.008%	-0.008%
Y	-0.002%	-0.002%
2n	-0.008%	-0.008%
Zr	0.046%	

	Zr		0.046%		
9.0	Sub-total =		48.54%		51.73%
	1	K ==	2.984%		5.245%
	N	# =	0.034%	Zr	0.046%
10.0	Total =		51.58%		57.02%

	=-					
				Average	Percent	7
	Wt %		Wt %	Wt %	Deviation	
Oxide	Oxida		Oxide	Oxide	Oxide	1
Ag2O	-0.004%		-0.004%	0.00%	1%	╛.
Al203	11.396%		12.577% «K	11.99%	-10%] 4
B203	0.171%		0.034%	0.10%	134%]
BaO	-0.003%		-0.003%	0.00%	1%]
BeO	-0.007%		-0.007%	-0.01%	1%]
Bi2O3	0.191%		-0.053%	0.07%	355%	7
CaO	4.541%		5.897% CK	4.54%		عية [
CqO	-0.006%		-0.005%	-0.01%	1%	7
CeO2	0.397%		-0.039%	0.18%	244%	7
Co2O3	-0.011%		-0.011%	-0.01%	1%	1
Cr2O3	-0.024%		-0.023%	-0.02%	1%	1
CuO	-0.006%		-0.006%	-0.01%	1%	7
Dy203	-0,006%		-0.006%	-0.01%	1%	1
Eu2O3	-0.004%		-0.004%	0.00%	1%	1
Fe2O3	7.379%		9.382% ♂<	8.38%	-24%	*
K20			3.594% H;	3.59%		T Hi
La2O3	0.092%		0.018%	0.06%	133%	1
Li2O	0.070%		0.014%	0.04%	135%	1
MgO	2,416%		2.774% ™	2.59%	-14%	ak
MnO	0.139%		0.176%	0.16%	-23%	١-``
MoO3	-0.012%		-0.012%	-0.01%	1%	1
Na2O	7,070%			7.07%		HŁ
Nd203	0,466%		0.129%	0.30%	113%	† '''
NiO	0.150.0		0.043%	0.04%		1
P205	0.576%		0.501%	0.54%	14%	1
PbO	0,296%		0.084%	0.19%	112%	1
SO3	0.351%		-0.160%	0.10%	534%	1
SiO2	52.373%		59.757% <℃	56.07%	-13%	40
SnO2	0.128%		-0.081%	0.02%	894%	1
SrO	-0.003%		-0.003%	0.00%	1%	1
TeO2	0,204%		0.065%	0.13%	103%	1
TiO2	1.326%		1.784% eK	1.55%	-29%	σK
V02	-0.013%		-0.013%	-0.01%	1%	4~~
Y203			-0.003%		1%	1
7203 ZnO	-0.003% -0.010%		-0.003%	0.00% -0.01%	1%	┨
			-0.01076		170	1
ZrO2	0.062%			0.06%		j
Sub-total =	89.644%		95.472%			
K20=	3.594%	a 20 =	7.070%			
MO-	0 043% 7	·02 -	0.062%			

97.9%

w

NO= 0.043% Zr02 = 0.062% Total = 93.3% 102.6% 11.0 Note: The KOH fusion is performed in a nickel metal crucible. Thus potassium and nickel reported are

values obtained from the Na2O2 /Zr fusion. The Na2O2 fusion is performed in zirconium metal crucible. Thus the Zr and Ne reported are values obtained from the KOH/Ni fusion.

> At low concentration of Ca, the Na2O2 fusion is not included in the average value Negative values reported in this procedure are at or below the estimated detection limit for the ICP/AES procedure.

12.0 Calculated by and date

12.0 Comment:

13.0 Approved by and date

* suspect

N-202 W-K

6.0

9.0

ICP ANALYSIS ON FUSED SAMPLES

Analytical and Process Support Laboratory

1.0	Lab No		1419-93
2.0	Customer		Marrill
3.0	Customer's Sample ID		SF-2 600 Aca SF Surrogate
4.0	Fusion Method	кон	Na202
5.0	Sample Wt	0.3096	0.3126
6.0	Dilution	2500	2500

7.0 ICP Analysis

The fusions were performed by the Analytical and Support Laboratory.

The solutions from the fused samples were analyzed on the ICP at 324 Building.

	Element.	KOH Wt %	Element	Na202 Wt%		Conversion	KOH Wt%		Na202 Wt%
Element	Cenc (ug/ml.)	Element	Conc (ug/mL)	Element	Qxide	Factor	Oxide		Oxide
Αg		-0.004%		-0.004%	AgO	1.07428	-0.004%		-0.004%
Al	7.469	6.031%	8.323	6.656%	A1203	1.88955	11.396%		12.577%
8	0.0659	0.053%	0.0131	0.010%	B203	3.22017	0.171%		0.034%
Ba		-0.002%		-0.002%	BaO	1.1165	-0.003%		-0.003%
Be		-0.002%		-0.002%	BeO	2.77519	-0.007%		-0.007%
8i	0.2125	0.172%	0.0582	-0.048%	Bi203	1.11484	0.191%		-0.053%
Ca	4.019	3.245%	5.27	4.215%	CaO	1.3992	4.541%		5.897%
Cd		-0.005%		-0.005%	CdO	1.14235	-0.006%		-0.005%
Ce	0.3998	0.323%		-0.032%	Ce02	1.22845	0.397%		-0.039%
Co		-0.008%		-0.008%	Co2O3	1.40726	-0.011%		-0.011%
Cr		-0.016%		-0.016%	Cr2O3	1,46184	-0.024%		-0.023%
Cu		-0.005%		-0.005%	CuO	1.25169	-0.006%		-0.006%
Dy		-0.005%		-0.006%	Dy203	1.14769	-0.006%		-0.006%
Eu		-0.003%		-0.003%	Eu203	1.15794	-0.004%		-0.004%
Fe	6.392	5.161%	8.206	6.563%	Fe203	1.42963	7.379%		9.382%
K	380.3	•	3.731	2.984%	K20	1.2046			3.594%
La	0.0973	0.079%	0.0197	0.016%	La203	1.17277	0.092%		0.018%
Li	0.0404	0.033%	0.0079	0.006%	Li20	2.15274	0.070%		0.014%
Mg	1.804	1,457%	2.091	1.672%	MgO	1.65858	2.416%		2.774%
Mn	0.1088	0.088%	0.1388	0.111%	MnO	1.58245	0.139%		0.176%
Mo		-0.008%		-0.008%	MoO3	1.50042	-0.012%		-0.012%
Na	6.495	5.245%	419.5		N#20	1.34798	7.070%		
Nd	0.4944	0.399%	0.1388	0.111%	Nd203	1.16639	0.466%		0.129%
Ni	0.818		0.0421	0.034%	NiO	1.27253			0.043%
P	0.3111	0.251%	0.2733	0.219%	P205	2.29128	0.576%		0.501%
Pb	0.3403	0.275%	0.0969	0.077%	PbO	1.0777	0.296%		0.084%
S	0.1742	0.141%	0.0539	-0.064%	SO3	2.49673	0.351%		-0.160%
Si	30.32	24.483%	34.93	27.935%	Si02	2.13914	52.373%		59.757%
Sn	0.1249	0.101%		-0.064%	SnQ2	1.26961	0.128%		-0.081%
Sr		-0.002%		-0.002%	SrO	1.18272	-0.003%		-0.003%
Te	0.2016	0.163%	0.0651	0.052%	TeO2	1.25078	0.204%		0.065%
Ti	0.9844	0.795%	1.337	1.069%	TiO2	1.66806	1.326%		1.784%
V		-0.008%		-0.008%	V02	1.62819	-0.013%		-0.013%
Y		-0.002%		-0.002%	Y203	1.26988	-0.003%		-0.003%
Zn		-0.008%		-0.008%	ZnO	1.24476	-0.010%		-0.010%
Zr	0.0571	0.046%	9.112		Zr02	1.3508	0.062%		
	Sub-total =	48.54%		51.73%	S	ub-total =	89.644%		96.829%
	Plus K=	2.984%	Plus Na=	5.245%		Plus K20	3.594%	Plus Ne202	7.070%
	Plus Ni =	0.034%	Mus Zr=	0.046%		Plus NIO	0.043%	Plus ZrO2	0.062%
	Total =	51.56%	o	57.02%		Total =	93.281%		103.961%

Note: The KOH fusion is performed in a nickel metal crucible. Thus potassium and nickel reported are values obtained from the Na2O2/Zr fusion. The Na and Zr reported on the Na2O2/Zr crucible are values obtained from the KOH/Ni fusion. 10.0

Operator: kfw

Sample Name: SF-2 1449-93 Method: GEN

Run Time: 09/03/93 11:16:23 Comment: NA202 .3126 2500 Mode: CONC Corr Factor: 1

Mode:	CONC Corr.	. Factor: 1	L				
Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	0181	8.323	.0131	.0891	.0018	.0582	5.270
SDev	.0004	.036	.0021	.0002	.0001	.0045	.023
%RSD	2.472	.4334	15.95	.1964	5.056	7.784	.4363
#1	0185	8.333	.0109	.0893	.0019		5.279
#2	0176	8.283	.0134	.0890	.0019		5.244
#3	0180	8.353	.0151	.0890	.0017		5.287
Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu32470013 .0003 27.27	Dy3531	Eu3819
Avge	.0064	.0048	.0140	.0231		.0101	.0036
SDev	.0007	.0035	.0007	.0004		.0005	.0001
%RSD	10.96	74.16	4.952	1.929		4.673	4.110
#1	.0070	.0016	.0132	.0227	0016	.0097	.0035
#2	.0066	.0085	.0145	.0236	0009	.0107	.0038
#3	.0056	.0041	.0143	.0229	0013	.0100	.0036
Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
Avge	8.206	3.731	.0197	.0079	2.091	.1388	.0164
SDev	.034	.074	.0006	.0003	.012	.0007	.0013
%RSD	.4137	1.994	2.860	3.896	.5505	.5233	8.171
#1	8.219	3.652	.0190	.0082	2.087	.1389	.0162
#2	8.167	3.799	.0198	.0079	2.083	.1381	.0178
#3	8.232	3.742	.0201	.0076	2.105	.1395	.0152
Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	s_1820
Avge	419.5	378.3	.1388	.0421	.2733	.0969	.0539
SDev	1.3	1.3	.0047	.0013	.0112	.0075	.0025
%RSD	.3098	.3455	3.415	3.118	4.116	7.729	4.646
#1	420.4	378.8	.1346	.0436	.2646	.0928	.0563
#2	418.0	376.8	.1439	.0411	.2692	.1056	.0513
#3	420.1	379.3	.1379	.0417	.2860	.0924	.0541
Elem	Si2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710
Avge	34.93	.0799	.0519	.0651	1.337	.0426	0371
SDev	.15	.0019	.0002	.0135	.007	.0006	.0002
%RSD	.4415	2.404	.3832	20.72	.5069	1.333	.4240
#1	34.99	.0821	.0520	.0675	1.340	.0422	0373
#2	34.76	.0789	.0516	.0505	1.329	.0424	0370
#3	35.05	.0786	.0520	.0772	1.342	.0432	0370
Elem Avge SDev %RSD	Zn2138 .0152 .0003 1.858	Zr3391 9.112 .035 .3831					
#1 #2 #3	.0149 .0155 .0152	9.122 9.074 9.142					

WHC-SD-EN-TI-240, Rev. 0

Operator: kfw

Bi2230

.2125

.0071

3.325

.2141

.2187

.2048

Dy3531

.0518

.0011

2.067

.0512

.0530

.0512

Mn2576

.1088

.0006

.5685

.1086

.1083

.1095

РЬ2203

.3403

.0077

2.266

.3359

.3492

.3358

V_2924

.0766

.0010

1.344

.0761

.0778

.0758

page 1

Ca3179

.022

4.019

.5420

4.018

3.998

4.041

Eu3819

.0148

.0003

2.103

.0146

.0152

.0147

_ Mo2020

.0533

.0005

1.013

.0531

.0540

.0529

S_1820

.1742

.0019

1.066

.1762

.1726

.1739

Y 3710

-.0321

.7921

-.0322

-.0318

-.0322

.0003

600 Areas F Surrogate

Method: GEN Sample Name: SF-2 1449-93

Run Time: 09/03/93 11:45:37 Comment: KOH .3096 2500

Mode: CONC Corr. Factor: 1 Elem Aq3280 A13082 B_2496 Ba4934 Be3130 Avge .0625 7.469 .0659 .0886 .0028 SDev .0015 .046 .0015 .0004 .0001 %RSD .4612 2.328 .6208 2.335 3.152 #1 .0619 7.468 .0675 .0885 .0027 #2 .0642 7.424 .0657 .0882 .0029 .0027 #3 .0615 7.516 .0645 .0890 Elem Cd2288 Ce4186 Co2286 Cr2677 Cu3247 .0620 .0663 .0398 Avge .0166 .3998 SDev .0005 .0106 .0017 .0014 .0014 %RSD #1 #2 #3 Elem Avge 2.865 2.660 2.803 2.099 3.442 .3942 .0605 .0392 .0170 .0651 .4121 .0414 .0167 .0639 .0678 .0161 .3931 .0615 .0660 .0389 Fe2599 K 7664 La3988 Li6707 Mg2790 6.392 380.3 .0973 .0404 1.804 SDev .039 2.5 .0020 .0004 .007 %RSD .6160 .6568 2.097 1.107 .3702 #1 6.402 380.7 .0963 .0402 1.796 #2 6.348 377.6 .0997 .0409 1.809 #3 6.425 382.5 .0959 .0402 1.805 Elem Na5889 Na3302 Nd4061 Ni2316 P_1782 18.03 .3111 Avge 6.495 .4944 .8180 .208 .34 .0116 .0062 SDev .0133 1.888 %RSD 3.209 2.352 . .7612 4.279#1 6.373 17.87 .4883 .8141 .2972 #2 6.735 18.42 .5078 .8148 .3237 #3 6.376 17.79 .4871 .8252 .3124 Si2881 Elem Sn1899 Sr4215 Te2142 Ti3349 .2016 Avge 30.32 .1249 .0446 .9844 SDev .19 .0012 .0003 .0030 .0067 %RSD .6242 .9558 .6102 1.490 .6844 #1 30.33 .1250 .2043 .0446 .9853 #2 30.12 .1237 .0444 .2021 .9773 #3 30.50 .1261 .0449 .1983 .9907 Zr3391 Elem Zn2138 Avge .0226 .0571 .0002 .0005 SDev .8575 %RSD .9404 #1 .0224 .0568 #2 .0225 .0577 #3 .0228 .0568

ICP RESULTS FOR 100 AREA SOIL FINES

				Corre	cted	Ţ					
1 1	100 Area	Soil Fines		100 Area S	loil Fines			Average	li		Average
Oxide	KOH	Na2O2		Na2O2	KOH	1	Oxide	wt%		Oxide	WL%
Si	66.89	73.19		66.01	66.33]	Si	66.17		Si	66.17
Al	13.26	14.28		12.88	13.14	1	Al	13.01		Ai	13.01
Fe	5.77	6.78		6.12	5.72	1	Fe	5.92		Fe	5.92
Ca	3.79	4.15		3.75	3.76) .	Ca	3.75		Ca	3.75
Na	3.61			3.61	3.58	ł	Na	3.59		Na	3.59
K		3.80		3.43	3.43	i	K	3.43	1	K	3.43
Mg	1.95	2.30	ļ	2.07	1.94	1	Mg	2.01		Mg	2.01
Ti	1.01	1.09		0.99	1.00		Ti	0.99		Ti	0.99
P	0.33	0.35		0.32	0.32		P	0.32	1 1	other	1.12
Ba	0.14	0.11		0.10	0.14	l	Ba	0.12	! !		
Mn	0.11	0.13		0.12	0.11	1	Mn	0.12			
Pb	0.11	0.08		0.07	0.11	1	Pb	0.09	[]		
Zı	0.07			0.07	0.07	1	Zr	0.07			
Nd	0.06	0.12		0.11	0.06	1	Nd	0.08			
Sr	0.05	0.05		0.05	0.05		Sr	0.05			
Ce	0.04	0.08		0.07	0.04		Ce	0.06	!	İ	
Te	0.04	0.06	Ì	0.06	0.04		Te	0.05]		
V	0.03	0.04		0.04	0.03	1	V	0.03			
Zn	0.02	0.03		0.02	0.02	ł	Zn	0.02			
La	0.02	0.02		0.02	0.02	1	La	0.02]		
Мо	0.02	0.02		0.02	0.01	ļ	Mo	0.02			
Cu	0.01	0.01		0.01	0.01	1	Cu	0.01			
Co	0.01	0.02	ļ	0.01	0.01)	Co	0.01) ,		
Li	0.01	0.01	ļ	0.01	0.01	1	Li	0.01			
Y	0.00	0.01		0.01	0.00	1	Y	0.00			
Ni	- 2	0.04		0.04	0.04		Ni	0.04			
total	97,3	106.8		100.0	100.0		total	100.0		total	100.0

ICP ANALYSIS ON FUSED SAMPLES

Analytical and Process Support Laboratory

1.0 ICP Analysis

8.0

The solutions from the fused samples were analyzed on the ICP at 324 Building

2.0 3.0 4.0	Lab No Customer Customer's ID	O RICK MERRILL SOIL	ico Area Soil Fines	RICK ME SOIL	
5.0	Fusion Method	KOH Na2O2		KOH	Na202
5.0	Sample Wt	0.324 g 0.292	9	0.324 g	0.292
7.0	Dilution	2524 mL 2500	mi	2524 mL	2500 ml

Analysis		
	Wt %	We %
Element	Element	Sement
Ag	0.004%	-0.004%
Al .	7.015%	7.559%
8	0.017%	-0.009%
Be .	0.124%	0.098%
Be .	-0.002%	-0.003%
Bi	-0.047%	-0.051%
C.	2.709%	2.968%
Cq	-0.005%	-0.005%
C•	0.033%	0.067%
Co	0.008%	0.011%
Cr	-0.016%	0.028%
Cu	0.011%	0.011%
Dy	-0.005%	0.008%
Eu	-0.003%	-0.003%
Fe .	4.034%	4.745%
K		3.158%
La .	0.014%	0.018%
<u>;-</u>	0.004%	0.008%
Mg	1,178%	1.387%
Mn	0.072%	0.083%
Mo	0.010%	0.013%
No.	2.677%	
Nd	0.054%	0.102%
Ni	0.00476	0.033%
P	0.142%	0.154%
Pb	0.099%	0.075%
S	-0.062%	-0.068%
		
Si	31.270%	34.212%
Sn .	-0.062%	-0.068%
Sr	0.039%	0.044%
<u>Te</u>	0.033%	0.051%
Ti	0.602%	0.655%
<u>v</u>	0.017%	0.026%
Y	0.003%	0.005%
Zn	0.019%	0.020%
Zr	0.063%	
iub-total =	50.24%	55.54%
	0.4508/	2 4774

	2524mL	ML		
			Average	Percent
1	Wt %	Wt %	Wt %	Deviation
Oxide	Oxide	Oxide	Oxide	Oxide
Ag2O	0.005%	-0.005%	0.00%	-22891%
(AI203)	13.255%	14.283%	13.77%	-7%
B203	0.056%	-0.028%	0.01%	592%
(BaO)	0.138%	0.107%	0.12%	25%
BeO	-0.006%	-0.007%	-0.01%	-9%
Bi203	-0.062%	-0.057%	-0.05%	-9%
CaO	3.791%	4.153%	3.79%	
CdO	-0.005%	-0.008%	-0.01%	-9%
CeO2	0.041%	0.083%	0.06%	-68%
Co2O3	0.012%	0.016%	0.01%	-28%
Cr203	-0.023%	0.040%	0.01%	-716%
CuO	0.014%	0.014%	0.01%_	1%
Dy203	-0.005%	0.009%	0.00%	-800%
Eu203	-0.004%	-0.004%	0.00%	-9%
(Fe203)	5.767%	6.783%	6.28%	-16%
(K20)		3.804%	3.80%	
La203	0.016%	0.021%	0.02%	-27%
Li2O	0.010%	0.014%	0.01%	-36%
(MgO)	1.954%	2.300%	2.13%	-16%
(MnO)	0.114%	0.132%	0.12%	-15%
MoO3	0.015%	0.020%	0.02%	-28%
Na2Q	3.608%		3.61%	
Nd2O3	0.063%	0.119%	0.09%	-62%
NiO		0.042%	0.04%	
(P205)	0.325%	0.353%	0.34%	-8%
PbO	0.107%	0.081%	0.09%	28%
803	-0.156%	-0.171%	-0.16%	-9%
SiO2	66.890%	73.185%	70.04%	-9%
SnO2	-0.079%	-0.087%	-0.08%	-9%
(SrO)	0.046%	0.052%	0.05%	-11%
TeO2	0.041%	0.064%	0.05%	-44%
(TiO2)	1.005%	1.093%	1.05%	-8%
V02	0.028%	0.042%	0.03%	-40%
Y203	0.004%	0.006%	0.01%	-40%
ZnO	0.024%	0.025%	0.02%	-4%
(ZrO2)	0.072%	31000 /5	0.07%	
			3.0.70	L

9.0 Sub-total=			50.24%		66.54 %	
		-	2 150%	_	2 4774	

53.43%

0.033% Zr 0.053% Sub-total = **\$7.399%** 106.479% K20= 3.804% 420 m 3.608% NiO ⇒ 0.042% ZrQ2= 0.072% 110.2% Total = 101.2%

105.7%

11.0 Note: The KOH fusion is performed in a nickel metal crucible. Thus potassium and nickel reported are values obtained from the Na202 /Zr fusion. The Na202 fusion is performed in zirconium metal crucible. Thus the Zr and Na reported are values obtained from the KOH/Ni fusion.

58,27%

12.0 Comment: At low concentration of Cs, the Na2O2 fusion is not included in the average value.

Negative values reported in this procedure are at or below the estimated detection limit for the ICP/AES procedure

12.0 Calculated by and date

13.0 Approved by end date

ICP ANALYSIS ON FUSED SAMPLES

Analytical and Process Support Laboratory

1.0 Lab No Customer RICK MERRILL

2.0 Customer's Sample ID

100 Area Soil Fines SOIL

4.0 Fusion Method 5.0 Sample Wt Dilution

KOH 0.3240 2524

Na202 0.2920 2600

7.0 ICP Analysis

6.0

8.0

The fusions were performed by the Analytical and Support Laboratory. The solutions from the fused eamples were analyzed on the ICP at 324 Building.

Demmer Come bagehold Demmert Come bagehold Demmert Oxide Femere Oxide		Element	KOH Wt %	Element	Ne202 Wt%		Convention	KOH Wt%		Ne202 Wt%
All 9.006 7.015% 8.828 7.558% Al203 1.88955 13.265% 14.283% B 0.0222 0.017% 0.0011 -0.008% 8203 3.22017 0.056% -0.028% -0.0228% Ba 0.159 0.169% 1.1816 0.1535 0.056% -0.027% 0.0613 -0.068% Ba 0.1.186 0.1335% -0.007% 0.1073 0.066% -0.003% Ba 0.2.77519 -0.006% -0.007% Bi 0.0276 -0.047% 0.0671 -0.051% Bi 0.0276 -0.005% -0.011% -0.005% -0.00	Bernenc	Cons (ug/mL)	Bernant	Cone (ug/ml.)	Symant	Ouide	Faster	Onlide		Code
Ba	Ag	0.0064	0.004%	0	-0.004%	AgO	1.07428	9.005%		-0.005%
Ba	A1	9.006	7.015%	8.829	7.559%	AJ203	1.88955	13.265%		14,283%
Bi	В	0.0222	0.017%	0.0011	-0.009%	B203	3.22017	0.056%		-0.028%
Bi	Ba	0.159	0.124%	0.1123	0.036%	8eQ	1.1165	0.135%		0.107%
Ca 3,478 2,709% 3,467 2,968% CaO 1,3992 3.791% 4,163% Cd 0 -0.005% 0.0039 -0.006% CdO 1,14236 -0.006% 0.0008% 0.0033% 0.0765 0.087% CdO 1,14236 -0.006% 0.008% 0.013 0.011% CdO 1,14236 0.012% 0.018% 0.018% CdO 0,0166 -0.016% 0.033% 0.0233 0.023% C;203 1,46194 -0.023% 0.040% 0.018% 0.011% 0.0131 0.011% CdO 1,25169 0.014% 0.014% 0.014% 0.014% 0.003% 0.006% 0.0	Be	0	-0.002%	0.0013	-0.003%	BeO	2.77519	-0.006%		-0.007%
Cd 0 0 0,005% 0,0039 0,005% Cd0 1,14236 0,005% 0,005% 0,005% 0,007% Cd02 1,22845 0,041% 0,0083% 0,0016% 0,008% 0,013 0,011% Cd020 1,22845 0,011% 0,018% 0,018% 0,013 0,011% Cd200 1,40726 0,012% 0,018% 0,014% 0,0083% 0,0033 0,028% C7203 1,46194 0,023% 0,040% 0,014% 0,011% 0,0131 0,011% Cd0 1,25108 0,014% 0,014% 0,014% 0,004% 0,004% 0,004% 0,005% 0,009% 0,0037 0,003% 0,0037 1,40784 0,008% 0,009% 0,0037 0,003% 0,0037 1,40784 0,004% 0,004% 0,004% 0,004% 0,003% 0,0037 0,003% 0,0037 1,14789 0,004% 0,004% 0,004% 0,003% 0,0037 0,003% 0,0037 1,17277 0,018% 0,004% 0,004% 0,00175 0,014% 0,0021% 0,015% 0,008% 0,009% 0,0037 0,003% 0,0037 0,003% 0,0037 0,003% 0,0037 0,003% 0,0037 0,003% 0,0037 0,003% 0,0037 0,003% 0,003% 0,0037 0,004% 0,0075 0,008% 0,009%	Bi	0.0276	-0.047%	0.0571	-0.051%	Bi203	1,11484	-0.062%		-0.057%
Ce 0,0425 0,033% 0,0785 0,087% Ce 02 1,22845 0,041% 0,083% Ce 0,0108 0,008% 0,013 0,011% Ce 203 1,40728 0,012% 0,018% 0,018% C7 0,0168 -0,016% 0,0323 0,028% C7203 1,46194 -0,023% 0,045% 0,045% 0,014% 0,014% 0,014% 0,014% 0,014% 0,014% 0,014% 0,014% 0,014% 0,0014% 0,0014% 0,0014% 0,003% 0,0037 -0,003% Eu 203 1,14769 -0,005% 0,009% Eu 0,0014 -0,003% 0,0037 -0,003% Eu 203 1,15794 -0,004% -0,004% -0,004% 5,542 4,745% Fa203 1,42863 5,767% 6,783% K 357 3,688 3,158% K20 1,2046 3,804% 0,0175 0,014% 0,00208 0,015% La203 1,17277 0,016% 0,014% 0,014% Mg 1,512 1,178% 1,62 1,387% Mg0 1,65858 1,954% 2,300% Mn 0,0921 0,072% 0,0973 0,083% MnO 1,56245 0,114% 0,132% Mg0 0,016% 0,016	Ca	3,478	2.709%	3.467	2.968%	CaD	1.3992	3.791%		4,153%
Co 0,0108 0.008% 0.013 0.011% Co203 1.40728 0.012% 0.018% Cr 0.0166 -0.016% 0.0323 0.028% Cr203 1.46194 -0.023% 0.040% 0.040% 0.011% 0.011% 0.0131 0.011% CuO 1.25169 0.014% 0.014% 0.014% 0.008% 0.009% 0.009% 0.009% 0.009% 0.009% 0.009% 0.009% 0.009% 0.00014 -0.005% 0.009% 0.009% 0.0037 -0.003% 0.0037 -0.003% 0.0037 -0.003% 0.0037 -0.003% 0.009% 0.00	Cd	0	-0.005%	0.0039	-0.005%	C4O	1,14236	-0.005%		-0.006%
Cr 0,0158 -0,019% 0,0323 0,028% Cr203 1,48194 -0,023% 0,040% Cu 0,0145 0,011% 0,0131 0,011% CuO 1,25169 0,014% 0,014% 0,014% 0,014% 0,014% 0,014% 0,004% -0,005% 0,009% 0,003% 0,003% 0,003% 0,003% 0,003% 0,003% 0,004% -0,004%	Ce	0.0426	0.033%	0.0785	0.087%	CeO2	1.22845	0.041%		0.083%
Cu 0.0145 0.011% 0.0131 0.011% CuO 1.25169 0.014% 0.014% Dy 0.0049 -0.005% 0.0091 0.008% Dy203 1.14769 -0.005% 0.0094 0.0098 0.0094 -0.003% 0.0037 -0.003% Eu203 1.15794 -0.005% -0.004% -0.001% -0.001% -0.018% -0.018% -0.018% -0.018% -0.018% -0.018% -0.018% -0.021% -0.0057 -0.004% -0.0057 -0.006% -0	Co	0.0108	0.005%	0.013	0.011%	Co203	1.40726	0.012%		0.016%
Dy 0,0049 -0,005% 0,0091 0,008% Dy203 1,14789 -0,005% 0,009% Eu 0,0014 -0,003% 0,0037 -0,003% Eu203 1,16794 -0,004% -0,004% -0,004% -0,004% -0,004% -0,004% -0,004% -0,004% -0,004% -0,009 -0,018% La203 1,17277 0,018% -0,004% -0,004% -0,0075 -0,008% Lu20 2,15274 -0,010% -0,014% -0,004% -0,0075 -0,008% Lu20 2,15274 -0,010% -0,014% -0,021% -0,0075 -0,008% Lu20 2,15274 -0,010% -0,014% -0,021% -0,0075 -0,008% Mo 1,5658 1,564% 2,300% -0,014% -0,014% -0,014% -0,014% -0,014% -0,014% -0,0157 -0,033% MnO 1,58245 -0,114% -0,122% -0,020% -0,020% -0,020% -0,020% -0,020% -0,020% -0,020% -0,020% -0,020% -0,020% -0,020% <t< td=""><td>Cr</td><td>0.0156</td><td>-0.016%</td><td>0.0323</td><td>0.028%</td><td>Cr203</td><td>1,46194</td><td>-0,023%</td><td></td><td>0.040%</td></t<>	Cr	0.0156	-0.016%	0.0323	0.028%	Cr203	1,46194	-0,023%		0.040%
Eu 0,0014 -0,003%	Cu	0.0145	0.011%	0.0131	0.011%	CuO	1.25169	0.014%		0.014%
Fe 5.178 4.034% 5.542 4.745% Fe203 1.42863 5.767% 6.783% K 357 3.688 3.158% K2O 1.2046 3.804% 1.0021% 0.0014% 0.00208 0.018% 1.2023 1.17277 0.018% 0.021% 0.021% 1.00057 0.004% 0.0075 0.006% 1.20 2.15274 0.010% 0.014% 1.0021% 1.00057 0.004% 0.0075 0.008% 1.20 2.15274 0.010% 0.014% 1.00057 0.004% 0.0075 0.008% 1.20 2.15274 0.010% 0.014% 1.00057 0.001% 0.0157 0.008% 1.0003 1.50042 0.015% 0.020% 1.00058 0.013% 1.00042 0.015% 0.020% 1.00058 0.0133 0.010% 0.0157 0.013% 1.00042 0.015% 0.020% 1.00058 0.001% 1.00058 1.00042 0.015% 0.020% 1.00058 0.00058	Dy	0.0049	-0.005%	0.0091	0.008%	Dy203	1,14759	-0.005%		0.009%
K 357 3.688 3.168% K2O 1.2048 3.804% La 0.0175 0.014% 0.0208 0.018% La203 1.17277 0.018% 0.021% Li 0.0067 0.004% 0.0075 0.008% Li20 2.15274 0.010% 0.014% Mg 1.512 1.178% 1.62 1.387% MgO 1.58245 0.114% 0.132% Mn 0.0921 0.072% 0.0973 0.083% MnO 1.58245 0.114% 0.132% Mo 0.013 0.010% 0.0167 0.013% MnO3 1.50042 0.016% 0.020% Na 3.436 2.677% 134 Na203 1.34793 3.600% 0.020% Nd 0.0694 0.0584 0.1196 0.102% Nd203 1.5032 0.053% 0.119% Ni 0.6498 0.039 0.033% NiO 1.27253 0.042% P 0.1819 0.142% 0.1797 <td< td=""><td>Eu</td><td>0.0014</td><td>-0.003%</td><td>0.0037</td><td>-0.003%</td><td>Eu203</td><td>1.15794</td><td>-0.004%</td><td></td><td>-0.004%</td></td<>	Eu	0.0014	-0.003%	0.0037	-0.003%	Eu203	1.15794	-0.004%		-0.004%
La 0.0175 0.014% 0.0208 0.018% La203 1.17277 0.018% 0.021% U 0.0067 0.004% 0.0075 0.008% LI20 2.15274 0.010% 0.014% 0.014% Mg 1.512 1.178% 1.62 1.387% Mg0 1.65858 1.964% 2.300% Mn 0.0921 0.072% 0.0973 0.083% MnO 1.58245 0.114% 0.132% Mo 0.013 0.010% 0.0157 0.013% Mo 0.03 1.50042 0.015% 0.020% Na 3.436 2.677% 134 Na20 1.34798 3.508% 0.118% 0.020% Na 0.0684 0.064% 0.1186 0.102% Nd203 1.16538 0.063% 0.118% 0.042% Nd 0.0498 0.039 0.033% NO 1.27253 0.042% 0.053% 0.118% 0.039 0.033% NO 1.27253 0.042% 0.353% Pb 0.1277 0.089% 0.098 0.075% P205 2.29129 0.325% 0.383% Pb 0.1277 0.089% 0.098 0.075% P0 0.0777 0.107% 0.081% S 0.0758 -0.062% 0.0716 -0.089% SO3 2.49873 -0.156% -0.171% Si 40.14 31.270% 39.96 34.212% SiO2 2.13914 66.890% 73.185% Sn 0.0326 0.062% 0.0431 -0.088% SnO2 1.28981 -0.079% -0.087% Sr 0.0504 0.039% 0.0612 0.044% SrO 1.128272 0.048% 0.052% Te 0.0418 0.033% 0.0658 0.0612 0.044% SrO 1.18272 0.048% 0.052% Te 0.0418 0.033% 0.0658 0.061% TeO2 1.25078 0.041% 0.068% VO 0.021 0.041% 0.068% 0.052% Te 0.0418 0.033% 0.0658 0.065% TiO2 1.86806 1.005% 0.062% 0.062% VO 0.021 0.017% 0.0301 0.026% VO 2 1.62819 0.028% 0.044% 0.062% V 0.021 0.017% 0.003% 0.0058 0.005% VO 1.26476 0.028% 0.042% 0.006% VO 0.021 0.019% 0.023% 0.006% VO 1.26476 0.029% 0.042% 0.006% VO 0.029% 0.005% VO 0.029% 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% VO 0.006% 0.006% 0.006% VO 0.006% 0.006%	Fe	5.178	4.034%	5.542	4.745%	Fe203	1.42953	5.767%		6.783%
Li 0,0067 0,004% 0,0075 0,008% Li20 2,15274 0,010% 0,014% Mg 1,512 1,178% 1,62 1,387% MgO 1,68285 1,964% 2,300% Mn 0,0921 0,072% 0,0973 0,083% MnO 1,58245 0,114% 0,132% Mo 0,013 0,010% 0,0157 0,013% MoO3 1,50042 0,015% 0,020% Na 3,436 2,677% 134 Na20 1,34798 3,608% 0,119% Ni 0,0684 0,0142% 0,1287 0,033% NiO 1,27253 0,063% 0,119% P 0,1819 0,142% 0,1797 0,154% P205 2,28129 0,325% 0,353% Pb 0,1277 0,098% 0,098 0,075% PbO 1,0777 0,107% 0,081% Si 40,14 31,270% 39.96 34,212% 302 2,13914 86,890% 73.185%	K	357		3.688	3.158%	K20	1,2046			3.804%
Mg 1.512 1.78% 1.62 1.387% MgO 1.65858 1.964% 2.300% Mn 0.0921 0.072% 0.0973 0.083% MnO 1.58245 9.114% 0.132% Mo 0.013 0.010% 0.0157 0.013% MoO3 1.50042 0.015% 0.020% Na 3.436 2.677% 134 Na20 1.34798 3.508% 0.020% Nd 0.0684 0.0198 0.102% Nd203 1.16539 0.063% 0.119% Ni 0.6496 0.039 0.033% NiO 1.27253 0.042% P 0.1219 0.142% 0.1797 0.154% P206 2.29129 0.325% 0.35% Pb 0.1277 0.098% 0.0716 PbO 1.0777 0.107% 0.081% Si 40.14 31.270% 39.96 34.212% SiO2 2.13914 66.890% 73.185% Sn 0.0326 0.062% 0.0431	La	0.0175	0.014%	0.0208	0.015%	Le203	1.17277	0.016%		0.021%
Min 0.0921 0.072% 0.0973 0.083% Min 0 1.58245 0.114% 0.132% Mo 0 0.013 0.010% 0.0157 0.013% Mo 03 1.50042 0.015% 0.020% Na 3.436 2.677% 134 Na20 1.34799 3.606% 0.043% 0.064% 0.1198 0.102% Nd203 1.16639 0.063% 0.119% Ni 0.6495 0.039 0.033% NiO 1.27253 0.042% P 0.1919 0.142% 0.1797 0.164% P206 2.29129 0.325% 0.353% Pb 0.1277 0.099% 0.099 0.075% Pb0 1.0777 0.107% 0.091% 0.081% S 0.0758 -0.062% 0.0716 -0.088% 903 2.49673 -0.166% -0.171% Si 40.14 31.270% 39.96 34.212% 8iO2 2.13914 66.890% 73.185% Sn 0.0326 -0.062% 0.0431 -0.088% Sn02 1.26961 -0.079% -0.067% Sr 0.0504 0.039% 0.0512 0.044% Sr0 1.18272 0.046% 0.052% Te 0.0419 0.033% 0.0596 0.051% TeO2 1.25078 0.041% 0.064% Ti 0.7734 0.602% 0.7651 0.655% TiO2 1.65806 1.005% 0.064% 0.064% Ti 0.7734 0.602% 0.0566 0.065% TiO2 1.65806 1.005% 0.043% 0.064% Ti 0.7734 0.602% 0.0566 0.065% TiO2 1.65806 1.005% 0.043% 0.064% Ti 0.7734 0.602% 0.0566 0.065% TiO2 1.65806 1.005% 0.028% 0.042% Ti 0.0211 0.003% 0.0056 0.006% Y203 1.26988 0.004% 0.006% 0.005% Ti 0.025% 0.005% 0.005% Y203 1.26988 0.004% 0.006% 0.005% Ti 0.025% 0.005% 0.005% Y203 1.26988 0.004% 0.006% 0.005% Ti 0.025% 0.005% 0.005% Y203 1.26988 0.004% 0.006% 0.005% Ti 0.025% 0.005% 0.005% Y203 1.26988 0.004% 0.005% 0.005% Ti 0.025% 0.005% 0.005% Y203 1.26988 0.004% 0.005% 0.005% Ti 0.025% 0.005% 0.005% Y203 1.26988 0.004% 0.005% 0.005% Ti 0.025% 0.005% 0.005% 0.005% Y203 1.26988 0.004% 0.005% 0.005% Ti 0.025% 0.005% 0.005% Y203 1.26988 0.004% 0.005% 0.005% 0.005% Y203 1.26988 0.004% 0.005% 0.005% 0.005% Y203 1.26988 0.004% 0.005% 0.0	u	0.0067	0.004%	0.0075	0.006%	L120	2.15274	0.010%		0.014%
Mo 0,013 0,010% 0,0157 0,013% Mo O3 1,50042 0,015% 0,020% Na 3,436 2,677% 134 Na20 1,34798 3,508% 0.119% 0.119% 0.020% 0.033% 0.063% 0.063% 0.119% 0.119% 0.063% 0.0119% 0.042% 0.063% 0.042% 0.041% 0.041% 0.022% 0.041% 0.041% 0.041% 0.041% 0.041% 0.041% 0.041% 0.041% 0.041% 0.041% 0.041% 0.042% 0.042%	Mg	1,512	1.178%	1.62	1,387%	MgO	1.6585#	1,954%		2.300%
Na 3,436 2,677% 134 Na2O 1,34798 3,508% Nd 0,0894 0,064% 0,1195 0,102% Nd203 1,16539 0,063% 0,119% Ni 0,6495 0,039 0,033% NiO 1,27253 0,042% P 0,1819 0,142% 0,1797 0,164% P205 2,29120 0,326% 0,353% Pb 0,1277 0,098% 0,098 0,075% PbO 1,0777 0,107% 0,081% S 0,0758 -0,062% 0,0716 -0,068% 903 2,49673 -0,156% -0,171% Si 40,14 31,270% 39.96 34,212% 8iO2 2,13914 66,890% 73,185% Sn 0,0326 -0,062% 0,0431 -0,068% 8nO2 1,26981 -0,079% -0,067% Sr 0,0544 0,033% 0,0598 0,051% TaO2 1,25078 0,041% 0,062% T 0,7734 0,602%	Mn		0.072%	0.0973	0.083%	MnO	1.58245	0.114%		0.132%
Nd 0,0684 0,064% 0,1198 0,102% Nd203 1,16639 0,063% 0,119% Ni 0,6495 0,039 0,033% NiO 1,27253 0,042% P 0,1819 0,142% 0,1797 0,164% P205 2,29129 0,325% 0,353% Pb 0,1277 0,098% 0,0716 -0,068% 303 2,49673 -0,156% -0,171% Si 40,14 31,270% 39.96 34,212% 8/02 2,13914 66,890% 73,185% Sn 0,0326 -9,062% 0,0431 -9,068% 8/02 1,26961 -9,079% -9,067% Sr 0,0504 0,033% 0,0512 0,044% 8r0 1,18272 0,048% 0,052% Te 0,0419 0,033% 0,0566 0,051% Te02 1,26078 0,041% 0,044% V 0,021 0,017% 0,0301 0,085% Ti02 1,6806 1,005% 1,083% <t< td=""><td>Mo</td><td>0.013</td><td></td><td></td><td>0.013%</td><td>M₀O3</td><td></td><td>0.015%</td><td></td><td>0.020%</td></t<>	Mo	0.013			0.013%	M ₀ O3		0.015%		0.020%
Ni	Na	3.436	2.677%	134		Na20	1.34798	3,608%		
P 0,1819 0,142% 0,1797 0,164% P208 2,29129 0,325% 0.353% Pb 0,1277 0,098% 0,0088 0,075% PbO 1,0777 0,107% 0.081% S 0,0758 -0.062% 0,0716 -9.068% 903 2,49873 -9.156% -0.171% Si 40,14 31,270% 39.96 34,212% 8iO2 2,13914 66,890% 73,185% Sn 0,0326 -9.062% 0,0431 -9.068% 8nO2 1,26961 -9.079% -9.067% Sr 0,0504 0,039% 0,0512 0,044% SnO 1,18272 0,048% 0.052% Te 0,0419 0,033% 0,0560 0,051% TeO2 1,25078 0,041% 0.044% Ti 0,7734 0,802% 0,7651 0,655% TiO2 1,63906 1,005% 1,033% V 0,0221 0,017% 0,0301 0,926% VO2 1,82819 0,028%	Nd	0.0694	0.054%	0.1196	0.102%	Nd203	1.16639	0.063%		0.119%
Pb 0,1277 0.099% 0.098 0.075% PbO 1.0777 0.107% 0.081% S 0,0758 -0.062% 0.0716 -0.083% SO3 2,49873 -0.156% -0.171% Si 40,14 31.270% 39.98 34.212% SiO2 2,13914 66.890% 73.185% Sn 0,0326 -0.062% 0.0431 -0.088% SnO2 1,26961 -0.079% -0.067% Sr 0,0504 0.039% 0.0612 0.044% SrO 1,18272 0.048% 0.052% Te 0.0419 0.033% 0.0696 0.051% TeO2 1,25078 0.041% 0.044% Ti 0,7734 0.602% 0.7651 0.655% TiO2 1,66906 1,005% 1.093% V 0,0221 0.017% 0,0301 0.026% VO2 1,62819 0.028% 0.049% Y 0,0041 0.003% 0.0056 0.006% Y 203 1,26988 0.004% 0.006% Zn 0,0245 0,019% 0.0232 0.020% ZnO 1,24476 0.024% 0.024% 0.025% Zr 0,0891 0.053% 13.48 ZrO2 1,3508 0.072% Sub-total So 0,072% Sub-total So 0,033% Plus Ne 2.677% Plus K2O 3,804% Plus Ne202 3,606% Plus Ni⇔ 0,033% Plus Zro 0,063% Plus NiO 0,042% Plus Ne202 0.072% Total S 53.43% 0 682.7% Total S 101.245% 110.521%		0.6495		0.039	0.033%		1.27253			0.042%
S 0,0758 -0.062% 0,0716 -0.085% 903 2,49673 -0.156% -0.171% Si 40,14 31.270% 39.96 34.212% 8iO2 2,13914 86.890% 73.185% Sn 0,0326 -0.062% 0.0431 -0.088% SnO2 1,26961 -0.079% -0.067% Sr 0,0604 0.039% 0.0512 0,044% SrO 1,18272 0,046% 0.052% Te 0,0419 0.033% 0.0696 0.061% TeO2 1,25078 0,041% 0.064% Ti 0,7734 0.602% 0.7651 0.655% TiO2 1,65906 1,005% 1.093% V 0,0221 0.017% 0.0301 0.026% VO2 1,62819 0.028% 0.042% Y 0.0041 0.003% 0.0056 0.006% Y203 1,26988 0.004% 0.006% Zn 0,0245 0,019% 0.0232 0.020% ZnO 1,24476 0.024% 0.024% 0.025% Zr 0,0881 0.053% 13.48 ZrO2 1,3508 0.072% Sub-total 97,399% 106.841% Plue K = 3,158% Plue N = 2,677% Plue K = 0,033% Plue N = 0,033% Plue N = 0,033% Plue N = 0,033% Plue N = 0,033% Plue N = 0,065% Plue N = 0,042% Plue N = 0,042% Plue N = 0,033% Plue Zr 0,065% Plue N = 0,042% Plue R = 0,033% Plue Zr 0,065% Plue N = 0,042% Plue R = 0,033% Plue Zr 0,065% Plue N = 0,042% Plue Zr 0,072% Plue R = 0,033% Plue Zr 0,065% Plue N = 0,042% Plue Zr 0,072% Plue Zr 0,065% Plue N = 0,042% Plue Zr 0,072% Plue Zr 0,065% Plue N = 0,042% Plue Zr 0,072% Plue Zr 0,065% Plue N = 0,042% Plue Zr 0,072% Plue Zr 0,072% Plue Zr 0,065% Plue N = 0,042% Plue Zr 0,072% Plue Zr 0,065% Plue N = 0,042% Plue Zr 0,072% Plue Zr 0,065% Plue N = 0,042% Plue Zr 0,072% Plue Zr 0,065% Plue N = 0,042% Plue Zr 0,072% Plue Zr 0,072% Plue Zr 0,072% Plue Zr 0,065% Plue R = 101,245% Plue Zr 0,072% Plue Zr 0,072% Plue Zr 0,065% Plue R = 101,245% Plue Zr 0,072% Plue Zr 0,072% Plue Zr 0,065% Plue R = 101,245% Plue Zr 0,072% P							=			
Si 40,14 31,270% 39,96 34,212% 8iO2 2,13914 66,890% 73,185% Sn 0,0326 -0,062% 0,0431 -0,088% SnO2 1,26961 -0,079% -0,067% Sr 0,0504 0,039% 0,0512 0,044% SrO 1,18272 0,046% 0,052% Te 0,0419 0,033% 0,0596 0,051% TeO2 1,25078 0,041% 0,064% Ti 0,7734 0,802% 0,7651 0,656% TiO2 1,65906 1,006% 1,093% V 0,0221 0,017% 0,0301 0,026% VO2 1,82819 0,028% 0,042% Y 0,0041 0,003% 0,0056 0,006% Y203 1,26988 0,004% 0,006% Zn 0,0245 0,019% 0,0232 0,020% ZnO 1,24476 0,024% 0,025% Zr 0,0891 0,053% 13,48 ZrO2 1,3508 0,072% Su										
Sn 0.0326 -0.062% 0.0431 -0.088% SnO2 1.26961 -0.079% -0.067% Sr 0.0504 0.039% 0.0512 0.044% SrO 1.18272 0.046% 0.052% Te 0.0419 0.033% 0.0596 0.051% TeO2 1.25078 0.041% 0.064% Ti 0.7734 0.802% 0.7651 0.656% TiO2 1.65906 1.005% 1.093% V 0.0221 0.017% 0.0301 0.026% VO2 1.62819 0.028% 0.028% Y 0.0041 0.003% 0.0056 0.006% Y203 1.26988 0.004% 0.006% 2n 0.0245 0.019% 0.0232 0.020% ZnO 1.24476 0.024% 0.025% Zr 0.0681 0.053% 13.48 ZrO2 1.3508 0.072% Sub-total = 50.24% Flue Ni= 2.677% Plue K2O 3.804% Plue Ni=202 3.806% Plue Ni=<			*							
Sr 0.0504 0.039% 0.0512 0.044% Sr0 1.18272 0.048% 0.052% Te 0.0419 0.033% 0.0596 0.051% TeO2 1.25078 0.041% 0.064% Ti 0.7734 0.602% 0.7651 0.656% TiO2 1.65906 1.006% 1.093% V 0.0221 0.017% 0.0301 0.026% VO2 1.82819 0.028% 0.028% Y 0.0041 0.003% 0.006% V2.03 1.26988 0.004% 0.006% Zn 0.0245 0.019% 0.0232 0.020% ZnO 1.24476 0.024% 0.025% Zr 0.0891 0.053% 13.48 ZrO2 1.3508 0.072% Sub-total = 50.24% 50.24% Sub-total = 97.339% 106.841% Plue Ni = 0.033% Plue Ni = 2.677% Plue K2O 3.804% Plue Ni ≥ O.072% Total = 53.43% 0.6827% Total = 101.245% <td>Si</td> <td>40.14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Si	40.14								
Te 0.0419 0.033% 0.0596 0.051% TeO2 1.25078 0.041% 0.064% Ti 0.7734 0.602% 0.7651 0.656% TiO2 1.65906 1.906% 1.095% V 0.0221 0.017% 0.0301 0.026% VO2 1.62819 0.028% 0.042% Y 0.0041 0.003% 0.0056 0.006% Y2.03 1.26998 0.004% 0.006% Zn 0.0245 0.019% 0.0232 0.020% ZnO 1.24476 0.024% 0.025% Zr 0.0891 0.053% 13.48 ZrO2 1.3508 0.072% Sub-total = 50.24% 50.24% Sub-total = 97.339% 106.841% Plue K = 3.158% Plue Ne = 2.677% Plue K2O 3.804% Plue Ne202 3.806% Plue Ni = 0.033% Plue Zr = 0.063% Plue NiO 0.042% Plue ZrO2 0.072% Total = 53.43% 0 58.27% Total = 101.245% 110.621%	Sn	0.0326								
Ti 0,7734 0.602% 0.7651 0.656% TiO2 1.65906 1.006% 1.005% 0.023% 0.0221 0.017% 0.0301 0.026% VO2 1.62819 0.028% 0.042% 0.042% 0.0041 0.003% 0.0056 0.006% Y2.03 1.26988 0.004% 0.006% 0.006% 0.005% 0.0232 0.020% 2n0 1.24476 0.024% 0.025% 0.025% 0.053% 13.48 ZrO2 1.3508 0.072% 0.025% 0.053% 13.48 ZrO2 1.3508 0.072% 0.072% 0.053% 0.025% 0.0	Sr	0.0504	0.039%	0.0512						
V 0,0221 0.017% 0,0301 0.026% VO2 1.82819 0.028% 0.028% Y 0.0041 0.003% 0.0066 0.006% Y203 1.26988 0.004% 0.006% Zn 0.0245 0.019% 0.0232 0.020% ZnO 1,24476 9.024% 0.025% Zr 0.0891 0.053% 13.48 ZrO2 1.3508 0.072% 0.025% Sub-total = 50.24% 50.24% 50.56% Sub-total = 97.339% 106.841% Plue K = 3.158% Plue Ni = 2.677% Plue K2O 3.804% Plue Ne202 3.806% Plue Ni = 0.033% Plue Zr = 0.063% Plue NiO 0.042% Plue Zr02 0.072% Total = 53.43% 0 68.27% Total = 101.245% 110.621%		0.0419	0.033%	0.0596	0.051%			0.041%		
Y 0.0041 0.003% 0.0056 0.005% Y203 1.26988 0.004% 0.006% Zn 0.0245 0.019% 0.0232 0.020% ZnO 1,24476 0.024% 0.025% Zr 0.0881 0.053% 13.48 ZrO2 1.3508 0.072% Sub-total = 50.24% 50.24% 50.54% Sub-total = 97.339% 106.841% Plue K = 3.158% Plue Ni = 2.677% Plue K2O 3.804% Plue Ne202 3.806% Plue Ni = 0.033% Plue Zr = 0.063% Plue NiO 0.042% Plue ZrO2 0.072% Total = 53.43% 0 58.27% Total = 101.245% 110.621%	Ti	0.7734	0.602%	0.7651	0.655%	TiO2	1.55806	1.005%		1.093%
Zn 0,0245 0,019% 0,0232 0,020% ZnO 1,24476 0,024% 0,025% Zr 0,0681 0,053% 13.48 ZrO2 1,3508 0,072% Sub-total= 50,24% 50,54% Sub-total= 97,399% 106,841% Plue K = 3,158% Plue Ne = 2,677% Plue K2O 3,804% Plue Ne2O2 3,806% Plue Ni= 0,033% Plue Zr= 0,063% Plue NiO 0,042% Plue ZrO2 0,072% Total = 53,43% 0 58,27% Total = 101,245% 110,621%	V	0.0221	0.017%	0.0301	0.025%	VO2	1.62819	0.028%		0.042%
Zr 0,0881 0,053% 13.48 ZrO2 1,3508 0,072% Sub-total = 50,24% 56,54% Sub-total = 97,399% 106,841% Plue K = 3,158% Plue Ne = 2,677% Plue K2O 3,804% Plue Ne2O2 3,806% Plue Ni = 0,033% Plue Ni Dio 0,042% Plue 2O2 0.072% Total = 53,43% 0 68,27% Total = 101,245% 110,521%	Y	0.0041	0.003%	0.0056	0.005%	Y203	1.2698	0.004%		0.006%
Sub-total = 50,24% 55,54% Sub-total = 97,399% 106,841% Plue K = 3,158% Plue Ne = 2,677% Plue K2O 3,804% Plue Ne2O2 3,806% Plue Ni = 0,033% Plue Zr = 0,053% Plue NiO 0,042% Plue ZrO2 0.072% Total = 53,43% 0 58,27% Total = 101,245% 110,521%		0,0245	0.019%	0.0232	0.020%	_	-			0.025%
Plue K = 3.158% Plue Ne = 2.677% Plue K2O 3.804% Plue Ne2O2 3.806% Plue Ni = 0.033% Plue Ni = 0.063% Plue Ni O 0.042% Plue 2rO2 0.072% Total = 53.43% 0 68.27% Total = 101.245% 110.521%	Zr	0,0681	0.053%	13.48		ZrO2	1.3508	0.072%		
Plus Ni = 0.033% Plus Zr= 0.053% Plus NiO 0.042% Plus ZrO2 0.072% Total = 53.43% 0 58.27% Total = 101.245% 110.521%		Sub-total#	50.24%		86.64%	94	ub-total =	97,399%		106.841%
Total = 53.43% 0 68.27% Total = 101.245% 110.521%		Plus K=	3.158%	Flue No =	2.677%		Plue K20	3,904%	Plus Ne202	
		Plus Ni≕	0.033%	Plus Zr=	0.053%		Plus NiO	0.042%	Flui 2:02	0.072%
		Total =	63.43%	=			Total =	101.245%		110.621%

10.0 Note: The KOH fusion is performed in a nickel metal crucible. Thus potassium and nickel reported are values obtained from the Ne2O2 /Zr fusion. The Na and Zr reported on the Ne2O2/Zr crucible are values obtained from the KOH/Ni fusion.

Analysis Report

Thu 09-16-93 02:35:03 PM

Operator: fth

page 1

Method: GEN Sample Name: Soil R Merrill

Run Time: 09/16/93 14:33:37

Comment: 0.324g/252.4g 10 X Dil KOH

Mode: CONC Corr. Factor: 1

Mode:	CONC Corr.	factor: 1					•
Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	.0054	9.005	.0222	.1590	.0004	.0276	3.478
SDev	.0029	.015	.0019	.0005	.0001	.0037	.011
%RSD	53.96	.1689	8.768	.3421	18.29	13.58	.3096
#1	.0026	8.987	.0209	.1585	.0004	.0264	3.468
#2	.0051	9.012	.0245	.1591	.0004	.0246	3.477
#3	.0084	9.015	.0213	.1595	.0003	.0318	3.490
Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
Avge	.0015	.0425	.0108	.0156	.0145	.0049	.0014
SDev	.0008	.0065	.0011	.0011	.0007	.0009	.0002
%RSD	56.29	15.20	9.859	7.202	4.917	19.21	16.37
#1	.0015	.0371	.0101	.0146	.0139	.0040	.0012
#2	.0006	.0408	.0103	.0153	.0143	.0049	.0015
#3	.0023	.0496	.0121	.0168	.0153	.0058	.0016
Elem Avge SDev %RSD	Fe2599 5.178 .005 .1038	K_7664 357.9 .3	La3988 .0175 .0017 9.585	Li6707 .0057 .0004 6.792	Mg2790 1.512 :009 .6068	Mn2576 .0921 .0003 .2834	Mo2020 .0130 .0006 4.727
#1	5.174	357.8	.0157	.0052	1.502	.0918	.0123
#2	5.176	357.6	.0178	.0059	1.514	.0920	.0133
#3	5.184	358.2	.0190	.0059	1.520	.0923	.0135
Elem Avge SDev %RSD	Na5889 3.436 .230 6.694	Na3302 1.610 .367 22.80	Nd4061 .0694 .0058 8.333	Ni2316 .6496 .0020 .3106	P_1782 .1319 .0069 3.771	Pb2203 .1277 .0090	S_1820 .0758 .0007 .9581
#1	3.23 1	1.190	.0669	.6498	.1891	.1202	.0750
#2	3.386	1.770	.0653	.6475	.1755	.1251	.0761
#3	3.686	1.870	.0760	.6515	.1811	.1377	.0763
Elem	312881	Sn1899	3r4215	Te2142	Ti3349	V_2924	Y_3710
Avge	40.14	.0326	.0504	.0419	.7734	.0221	.0041
SDev	.07	.0020	.0002	.0034	.0014	.0008	.0002
%RSD	.1738	5.994	.3275	8.163	.1821	3.571	4.676
#1	40.06	.0306	.0503	.0445	.7718	.0214	.0039
#2	40.15	.0330	.0504	.0380	.7746	.0220	.0040
#3	40.19	.0344	.0506	.0430	.7738	.0229	.0043
Elem Avge SDev %RSD	Zn2138 .0245 .0003 1.210	Zr3391 .0681 .0006 .3113					
#1 #2 #1	.0247 .0242 .0245	.0577 .0579 .0580	B-18				

#1

.0233

.0233

.0231

13.59

13.46

13.40

Analysis Report

Mon 09-13-93 12:41:20 PM

Operator: FTH

page I

Method: GEN Sample Name: Soil 100 Arca Sal Fires
Run Time: 09/13/93 12:39:39

Comment: Rick Merrill 0.292g/250 g 10 X Dil Na202

Mode: CONC Corr. Factor: 1

riocie.	COMC COLL	· ractor.	-				
Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	0341	8.829	.0011	.1123	.0013	.0571	3.467
SDev	.0020	.061	.0011	.0011	.0001	.0111	.017
%RSD	5.866	.6918	97.82	.9758	6.570	19.41	.5001
#1	0363	8.888	0001	.1135	.0012	.0466	3.485
#2	0337	8.832	.0020	.1121	.0012	.0560	3.465
#3	0324	8.766	.0015	.1114	.0014	.0686	3.450
Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
Avge	.0039	.0785	.0130	.0323	.0131	.0091	.0037
SDev	.0005	.0144	.0013	.0018	.0008	.0012	.0005
%RSD	13.34	18.41	9.916	5.609	5.948	12.96	13.28
#1	.0036	.0628	.0117	.0303	.0125	.0078	.0032
#2	.0045	.0813	.0131	.0329	.0129	.0094	.0038
#3	.0036	.0912	.0142	.0338	.0140	.0100	.0041
Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
Avge	5.542	3.688	.0208	.0075	1.620	.0973	.0157
SDev	.038	.297	.0026	.0014	.001	.0008	.0011
%RSD	.6948	8.046	12.33	18.46	.0525	.8050	7.202
#1	5.584	3.367	.0179	.0061	1.619	.0982	.0154
#2	5.533	3.746	.0217	.0075	1.619	.0970	.0169
#3	5.508	3.952	.0229	.0089	1.621	.0967	.0147
Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	S_1820
Avge	382.6	134.2	.1196	.0390	.1797	.0880	.0716
SDev	7.1	2.5	.0115	.0063	.0101	.0049	.0027
%RSD	1.862	1.861	9.612	16.31	5.596	5.507	3.822
#1	389.8	136.9	.1070	.0331	.1762	.0827	.0746
#2	382.4	133.9	.1223	.0381	.1719	.0892	.0713
#3	375.6	132.0	.1295	.0457	.1910	.0922	.0691
Elem	Si2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710
Avge	39.96	.0431	.0512	.0596	.7651	.0301	.0056
SDev	.24	.0028	.0008	.0115	.0051	.0010	.0003
%RSD	.6085	6.442	1.662	19.37	.6655	3.476	5.161
#1	40.21	.0412	.0521	.0496	.7706	.0289	.0052
#2	39.95	.0463	.0509	.0570	.7640	.0307	.0057
#3	39.73	.0418	.0505	.0723	.7606	.0307	.0058
Elem Avge SDev %RSD	Zn2138 .0232 .0001 .3648	Zr3391 13.48 .10 .7243			·	·	

8.0

ICP ANALYSIS ON FUSED SAMPLES

Analytical and Process Support Laboratory

1.0 ICP Analysis

The solutions from the fueed samples were analyzed on the ICP at 324 Building

2.0	Leb No		00		
3.0	Customer		lick Mer	rill	_
4.0	Customer's ID	5	00 Area	Soil FIAC	٤
6.0	Fusion Method	Кон		Na202	_
6.0	Sample Wt	0.205	_g :	0.299	
7.0	Dilution	2500	mL.	2500	mL

Plick Me	PYTHI	
300 Are	a Soil Fines	
KOH_	Ne202	
0.295	0.299 g	
2600 mL	2500 m	Ł

Dilution	2500 ml.	2500
Analysis		
	Wt %	Wt %
Element	Element	Element
Ag	-0.004%	-0.004%
Al	7.582%	7.209%
. B_	-0,008%	-0.008%
Ba	0,128%	0.137%
Ba	-0.003%	-0.003%
81	-0.051%	-0.080%
Ca	3.620%	2.846%
Cd	-0.005%	-0.005%
Ce	-0.034%	-0.033%
Co	-0.008%	-0.006%
Cr	0.017%	0.035%
Cu	0.055%	0.085%
Dy	-0.005%	-0.005%
Eu	-0.003%	0.003%
Fe	5.410%	6,915%
K		1,820%
Le	0.009%	0.012%
Li	-0.004%	-0.004%
Mg	1,436%	1.832%
. Mn_	0.088%	0.091%
Mo_	0.010%	0.011%
Na	0.829%	
Nd_	0.028%	0.045%
Ni_		0.037%
P	0.178%	0.211%
Pb	-0.068%	-0.067%
\$	-0.088%	-0.087%
Si	29.309%	28.201%
Sn_	-0.068%	-0.067%
Sr	0.039%	0.046%
Te	-0.0\$1%	0.050%
TI	0.834%	0.265%
V	0.023%	0.028%
Y	0.003%	0.004%
Zn_	0.062%	0.039%
Zr	0.042%	

			Average	Percent
	Wt %	Wt %	Wt %	Deviation
Oxide	Oxide	Oxide	Oxide	Oxide
Ag20	-0.005%	-0.004%	0.00%	196
AI203	14.326%	14,755%	14,54%	-3%
B203	-0.027%	-0.027%	-0.03%	1%
8.0	0.144%	0.153%	0.15%	-6%
BeO	-0.007%	-0.007%	-0.01%	1%
8i2O3	-0.087%	-0.056%_	-0.06%	1%
CaO	5.065%	<u> 5,381%</u>	8.07%	
C40	-0.006%	-0.006%	-0.01%	1%
CeO2_	0.042%	-0.041%	-0.04%	1%
Ce203	-0.012%	-0.012%	-0.01%	1%
Cr203	0.025%	0.052%	0.04%	-70%
CuO_	0.073%	0.082%	0.08%	-11%
0y203	-0.006%	9.006%	-0.01%	1%
Eu203	-0.004%	-0.004%	0.00%	1%
Fe203	7,735%	8,456%	8.10%	-9%
K20		2.192%	2,19%	
La203	0.011%	0.014%	0.01%	-25%
Li2O	-0.009%	-0.009%	-0.01%	1%
MgO	2.382%	2,541%	2.48%	-6%
MnO	0.139%	0.144%	0.14%	-4%
MeO3	0.014%	0.016%	0.02%	-11%
Na20	1,118%		1,12%	
Nd2O3	0.033%	0.052%	0.04%	46%
NiO	0.000.0	0.047%	0.05%	
P205	0.407%	0.484%	0.45%	-17%
PbO	-0.073%	-0.072%	-0.07%	1%
503	-0.169%	-0.167%	-0.17%	1%
SiO2	62.697%	62,466%	62.58%	0%
Sn02	-0.086%	-0.085%	-0.09%	1%
SrO	0.047%	0.084%	0.05%	-15%
TeO2	-0.064%	-0.063%	-0.06%	1%
TiO2	1.391%	1,444%	1.42%	4%
V02	0.038%	0,045%	0.04%	-18%
Y203	0.004%	0.005%	0.00%	-27%
ZnO	0.066%	0.048%	0.06%	30%
Zr02	0.057%		0.06%	
	2.047.74		0,00,0	

0,0	Sub-total =		40.70%		81.75%
		K-	1.520%	No.	0.828%
		NG -	0.037%	27=	0.042%

At low concentration of Co. the NG202 hadon is not included in the average value,
Negotive values reported in this procedure are or palow the estimated detection limit for the ICP/AES procedure.

6442 - 66,776% K20= 2,182% 86.118% 1.118%

98.7%

10.0 Tetal = \$1.56% \$2.62%

MO= 0.047% 2/02= 0.087% Total = 98.0% 99.3

11.0 Note: The KOH fusion is performed in a mindal metal ensaible. Their percentary and nickel expected are values electriced from the Na202 /Zr husten. The Na202 fusion is performed in another ensaitle. These the Zr and Ne repeated are values electriced from the KOHAS fusion.

12.0 Calculated by and date

13.0 Approved by and date

6.0

ICP ANALYSIS ON FUSED SAMPLES Analytical and Process Support Laboratory

1.0	Lab No						
2.0	Customer	Rici	t Montill				
3,0	Customer's Sample ID	300 Ann BOT FINES					
4.0	Fusion Method	КОН	N=202				
6,0	Semple Wt	0.2950	0.2990				
6.0	Dilution	2500	2600				
7.0	ICP Analysis The funions were performed	I by the Analytical and State	nort I aboratory.				

The fusions were performed by the Analytical and Support Laboratory.

The solu	tions fron	n the fueed s	emples were en	alyzed on the ICF		×g.						
	December	Bernerit	EOH WE %	Service	M-303 WIB		Conversion		E344 W1%			Ne202 V(%
Setun	Sheet	Cons (MEANL)	Beneri	Cone bugins)	-	Cristo	Feater		Calde			Quide
Αg	0.005	0.00448	-0.004%	-0,07047	0.004%	AgO	1.0743	0.000%	-0.005%		0.000%	-0.004%
A	0.03	8.94843	7.582%	0.3395	7.509%	A1203	1.8895	14.326%	14.326%		14.755%	14.765%
₿	0.01	0.00467	-0.008%	-0.01717	-0.008%	6203	3.2202	0.000%	-0.027%		0.000%	-0.027%
Ba	0.003	0.15271	0.129%	0.1643	0.127%	BaO	1.1166	0.144%	0.144%		0.153%	0.153%
8=	0.003	0.00022	-0.003%	0,00163	~2.003%	BeO	2.7752	0.000%	-0.007%		%000,G	-0.007%
Bi	0.00	0.02202	-0.051%	0.03646	0.050%	Bi203	1,1148	% 0000.0	-0.057%		0.000%	-0.056%
C4	0.01	4.27172	2,620%	4.50037	3.548%	CeO	1,3892	6.065%	6.065%		6.381%	5.381%
Cd	800.0	0.00388	-0.005%	9.00261	-0.006%	CdO	1,1423	0.000%	-0.006%		0.000%	-9.006%
Çe	0.04	0.03177	-0.034%	-0.43311	-0.033%	CeO2	1,2284	0.000%	-0.042%		0.000%	-0.041%
Ca	0.01	0.00006	-0.008%	0.00005	-0.008%	Ce203	1,4073	0.000%	-0.012%		0.000%	-0.012%
Cr	0.02	0.02	0.017%	0.04223	0.935%	Cr203	1.4618	0.026%	0.025%		0.052%	0.052%
Cu	0.006	0.00015	0.059%	0.0781	0.065%	CuO	1.2517	0.073%	0.072%		0.082%	0.082%
Dy	0.008	0.00261	-0.005%	0.00404	-0.005%	Dy203	1.1477	2,000%	-0.006%		0.000%	-0.006%
Eu	0.004	0.00000	-0.003%	0.00226	-0.003%	Eu203	1.1579	0.000%	-0.004%		0.000%	-0.004%
Fe	0.006	0.38404	6.410%	7.07364	5.915%	Fe203	1.4295	7.736%	7.735%		8,456%	2.456%
ĸ	0.3	444,0235		2.17672	1.820%	K20	1,2046	0.000%			2.192%	2.192%
La	0.01	0.0108	0.009%	0.01411	0.012%	Le203	1.1728	0.011%	0.011%		0.014%	0.014%
u	0.006	0.00296	-0.004%	0.00262	-0.004%	Li20	2.1627	0.000%	-0.009%		0.000%	-0.009%
Ma	0.08	1.00437	1.436%	1.63211	1.532%	MgO	1.6586	2.382%	2.382%		2,541%	2.841%
Mn	0.003	0.10330	0.088%	0.10017	0.091%	MnO	1.5826	0.138%	0.139%		0.144%	0.144%
Mo	0.01	0.01138	0.010%	0.01283	0.011%	MoO3	1.5004	0.014%	0.014%		0.016%	0.016%
Na	0.05	0.87851	0.829%	400.136		Na2O	1.348	1.118%	1.118%		0.000%	
		0.40624		413.3164								
Nd	0.02	0.03291	0.028%	0.0533	0.045%	Nd203	1.1664	0.033%	0.033%		0.052%	0.052%
Ni	0.02	1.04521		0.04481	0.037%	NiO	1.2725	0.000%			0.047%	0.047%
P	0.08	0.20661	0.178%	0.25296	0.211%	P205	2.2913	0.407%	0.407%		0.484%	0.484%
Pb	0.08	0.07664	-0.088%	0.00032	-0.967%	PbO	1.0777	0.000%	-0,073%		0.000%	-0.072%
\$	0.08	0.03767	-0.068%	0.00729	-0.067%	503	2.4957	0.000%	-0.160%		0.000%	-0.167%
Si	0.01	34.58506	29.309%	34.92496	28.201%	5102	2.1391	62.697%	82,667%		62.466%	62.466%
\$n	0.08	0.04076	-0.068%	0.06771	-0.067%	5n02	1.2696	0.000%	-0.036%		0.000%	-0.085%
Sr	0.003	9.04851	0.039%	0.06462	0.048%	SrO.	1.1827	0.047%	0.047%		0.054%	0.054%
Te	0.06	0.03426	-0.061%	0.04381	-0.080%	TeO2	1.2508	0.000%	-0.064%		0.000%	-0.063%
Ti	0.003	0.96412	0.834%	1.0357	0.866%	TiO2	1.6881	1.391%	1.291%		1.444%	1.444%
V	0.01	0.02718	0.023%	0.03207	0.028%	V02	1.6282	0.038%	0.038%		0.046%	0.045%
Y	0.003	0.00374	0.003%	0.00487	0.004%	Y203	1.2699	0.004%	0.004%		0.005%	0.005%
Zn	0.01	0.04227	0.053%	0.04842	0.039%	ZnO	1,2448	0.066%	0.066%		0.048%	0.048%
Zr	0.01	0.04882	0.042%	24.90468		Zr02	1.3508	0.057%	0.967%		0.000%	
		1000		1000								
		Sub-total =	48,70%		61.76%		ub-tatai =	85,770%	95.770%		00.432%	86.433%
		Plus C=	1.420%	Phys No -	0.525%		Plus 420		2.192%	Plus 202		1.118%
		Photo 16 +	0.037%	Fluid 20 m	6.042%		Plant MICO		0.047%	Phys 2:02		0.057%
		Total =	B1,56%		52.62%		Total -	1	90.010%			2800.00

10.0 Note: The KOH fusion is perfected in a slightly metal entertie. These pataselum and nickel reported are values elected from the Na202/Zr fusion. The Na and Zr separted on the Na202/Zr enusible and applications detailed from the NA202/Zr enusible.

Initial	Isotopic Conter	it of Soil Fines	(pCi/g)
	100 Area Data fro	om Shas Mattigod	
	300 Area Data	from Jeff Seme	
100 Area			
wt% in size	7.1	3.7	
	<0.074mm	.074< <.25mm	calc. <.25mm
Co-60	49	10	36
Cs-137	590	325	499
Eu-152	819	117	579
	<2mm		
Sr-90	12.5		
Pu-239/240	2.74		
300 Area	calc. <0.425 mm		
U-238	605	XRF Data	

TCLP DATA SHEET

Date: <u>9-3-93</u> pH meter #	balance #	analysi(s): James Evans

						Stai	ting	Finis	liing				
Sample	Prelim. Eval. pH	Extraction Fluid	Wt. Extraction Bottle (g)	Wt. Sample (g)	Wt. Extraction Fluid (g)	Date	Time	Date	Time	Ambient Temp. (°C)	Extract pH	μL HNO3	Final pH
SFI		į	24.179	5.019	100.29	9/7/93	14:00	9/8/93	08:25	14°C Indicationly	4.98		
SF2		1	24.579	5,009	100.09	9/7/43	14:00			<u> </u>	4,98		
SF3	1.33	١	24.299	4,999	99.89		14:32				4.99		
SF4		١	24,559	5,029	100,49		14:33				4.97		
SF5	1.33		24,୦% ବ	5,02g	१००.५ ब		[년 : 35				4,98	<u> </u>	
SF6		1	23,958	5,019	100.29		14:36				4.98		
SF7		(24.519	5.029	100,4 9		14:37			<u> </u>	5.00	<u> </u>	
SF8		1	24,139	5,009	100,09		14:38				4.98		
SF 9-1		1	24,22,	5.024	100,49		14:39				4.98		
SF9-2		. (23.97	5.00%	[00,06		14:40				4.98		
SF 9-3		1	24.03	4.990	99.89		14:40				4.97	4	
Blank	-		24,45	_	100,00	1	(५:भ।	A	1		4.47	-	

WHC-SD-EN-TI-240, Rev. 0

Analysi	s Re	port
---------	------	------

page 1

-.0007

-.0037

.0031

.0017

	Analysis	Repo	ort				T	hu 09	-09-93	11:5	3:20	AM	page	3
	Method: Run Time	: 09/		Sample A 11:51:39		BLANK	for SF8	- SF9-3		Oper	ator:	KFW		
	Comment: Mode: CO			Factor:	1.									
	Elem Avge	Ag32		A13082		2496 225	Ba49 .002		Be3130)	Bi223		Ca3179)
	SDev	.000		.0015		006	.000		.0001		.0057		8000.	
	%RSD	6.49	19	4.409	2.	834	6.66	2	25.28		34.15		.1752	
	#1	.002	5	.0336	.0	229	.002	6	.0003		.0143		.4367	
	#2	.002		.0367		229	.002		.0004		.0232		.4360	
	#3	.002		.0353		218	.002		.0003		.0125		.4352	
.		.002												
- Andread	Elem	Cd22	88	Ce4186	Co	2286	Cr26	77	Cu3247	•	Dy353	1 _	Eu3819) [
	Avge	.000	2	.0255	.0	028	.003	0	.0028		.0029		.0010	_
	SDev	.000	2	.0028	.0	006	.000	3	.0002		.0003		.0001	
£	9- D C D	86.8		11.13		.87	10.0		6.662		9.989		15.00	
1	#1 #2 #3													
	#1	.000		.0230		024	.003		.0030		.0026		.0010	
EWAN.	#2	.000	4	.0286	.0	035	.003	3	.0027		.0032	<u></u> -	.0011	
	#3	.000	1	.0248	.0	026	.002	7	.0027		.0029	-	.0008	
	Elem	Fe25	99	K 7664	La	3988	Li67	07	Mg2790	,	Mn257	6	Mo2020	ì
	Avge	01		1.328		054	.005		.1161		.0004		.0031	
	SDev	.00		.100		008	.000		.0032		.0000		.0011	
	%RSD	5.31		7.527		.23	3.53		2.781		.0000			
		3.31			7. 4	.43	3.33	J	2.701		.0000		35.04	
	#1	01		1.322		056	.005	l	.1133		.0004		.0024	
	#2	01	67	1.430	.00	261	.005	1	.1196		.0004		.0026	
	#3	01	36	1.231	.00	046	.005	1	.1153		.0004		.0043	
	Elem	Na58	89	Na3302	Nd-	1061	Ni23	16	P_1782		Pb2200	3	S_1820	
	Avge	581.		464.1		549	.007		.0421		.0176		.0697	
	SDev	1.		1.2		53	.001		.0058		.0039	4	.0038	
	%RSD	.283		.2671		L03	22.88		13.76		22.38		5.458	
	OXCDD	.203	J	.2011	0.1	.03	22.00	,	13.70	•	44.30		2.400	
	#1	582.	7	464.6	.06	559	.006	L	.0360		.0192		.0735	
	#2	579.6	5	462.7	.06	596	.006	7	.0430		.0131		.0659	
		582.3		465.1		592	.0092		.0475		.0205		.0699	
		Si288		Sn1899		1215	Te21-		Ti3349		V_2924	<u>.</u>	Y_3710	
	Avge	.056		.0372	.00	158	.0210)	0020		.0030		.0008	
	SDev	.0013	5	.0032	.00	01	.0062	2	.0002		.0005		.0001	
	BRSD	2.62	5	8.649	1.5	575	29.78	3	9.362	•	9.401	,	9.115	
	#1	.057	7	.0383	.00)58	.0138	3	0021		.0029		.0008	-
	#2	.0573		.0336		59.	.0255		0G18		.0033		.0009	
	#3	.0549		.0398	.00		.0235		0021		.0028		.0003	
	- 1	P * 1 *		70003							-		-	
		Zn213		Zr3391										
	-	001		.0018										
	3Dev	.000		.0003								•		
	GRSD	1.64-	<u>l</u>	13.38									-	
	#1	003	\$6	.0017										
	ボニ 長年	- :00:		0021										

Analysis Report Thu 09-09-93 11:44:05 AM page 1

Operator: KFW Method: GEN Sample Name: SF8

Run Time: 09/09/93 11:42:24

Comment: 3 X DIL Mode: CONC Corr

Corr. Factor: 1

10.33

.0304

.0252

.0259

59.96

.0004

.0004

.0010

%RCD

#1

#2

#5

Mode:	CONC Corr.	Factor:	1				
Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	.0004	.0737	.0136	.0035	.0279	.0158	.5344
SDev	.0007	.0064	.0006	.0002	.0029	.0027	.0009
%RSD	156.3	8.731	4.660	6.277	10.36	17.27	.1781
#1	.0001	.0776	.0139	.0033	.0312	.0142	.5342
#2	0000	.0663	.0128	.0034	.0261	.0142	.5335
#3	.0012	.0772	.0140	.0037	.0264	.0189	.5354
Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
Avge	.0276	.0120	0000	.0292	.0026	.0029	.0010
SDev	.0034	.0035	.0005	.0034	.0007	.0004	.0001
%RSD	12.34	29.41	9995.	11.54	26.02	15.82	15.00
#1	.0313	.0110	0003	.0330	.0024	.0033	.0011
#2	.0246	.0090	0003	.0268	.0021	.0024	.0008
#3	.0269	.0158	.0006	.0278	.0034	.0030	.0010
Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
Avge	.1052	.7288	.0029	.0340	.1305	.0030	.0013
SDev	.0021	.1682	.0007	.0032	.0022	.0001	.0003
%RSD	1.994	23.07	25.16	9.366	1.675	2.665	24.39
#1	.1076	.7409	.0024	.0377	.1327	.0029	.0011
#2	.1035	.5549	.0026	.0319	.1284	.0031	.0011
#3	.1047	.8906	.0038	.0325	.1303	.0031	.0016
Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	S_1820
Avge	588.3	462.4	.0515	.0327	.0705	.0023	.0913
SDev	3.4	1.8	.0051	.0037	.0056	.0026	.0037
%RSD	.5705	.3971	9.878	11.22	7.915	109.5	4.031
#1	590.5	463.8	.0510	.0370	.0655	.0015	.0948
#2	590.0	463.2	.0467	.0309	.0694	.0003	.0875
#3	584.5	460.3	.0568	.0303	.0765	.0052	.0915
Elem	Si2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710
Avge	.2326	.0378	.0067	.0081	.0007	.0020	.0284
SDev	.0029	.0019	.0001	.0080	.0002	.0003	.0029
%RSD	1.243	5.104	1.375	99.12	26.65	13.85	10.40
#1	.2347	.0396	.0066	.0027	.0008	.0019	.0318
#2	.2293	.0358	.0067	.0043	.0005	.0019	.0265
#3	.2338	.0382	.0067	.0173	.0008	.0024	.0268
Elem Avge SDev	Zn2138 .0272 .0023	Zr3391 .0006 .0004					

Analysis Report Thu 09-09-93 11:46:11 AM page 1

Method: GEN Sample Name: SF9-1 Operator: KFW

Run Time: 09/09/93 11:44:31

Comment: 3 X DIL

	Mode: CC	NC Corr.	Factor: 1					
	Elem Avge SDev %RSD	Ag3280 .0005 .0004 81.02	A13082 .0519 .0016 3.078	B_2496 .0114 .0006 5.632	Ba4934 .0034 .0002 4.879	Be3130 .0064 .0014 21.18	Bi2230 .0105 .0063 60.13	Ca3179 .5505 .0005 .0908
	#1 #2 #3	.0008 .0006 .0000	.0534 .0502 .0520	.0107 .0118 .0118	.0036 .0033 .0033	.0072 .0072 .0049	.0036	.5507 .5499 .5509
*	Avge SDev	Cd2288 .0063 .0014 21.81	Ce4186 .0110 .0005 4.265	Co2286 .0005 .0006 107.9	Cr2677 .0073 .0017 22.75	Cu3247 .0023 .0002 8.248	Dy3531 .0018 .0003 16.81	Eu3819 .0005 .0000
14.276	#1 #2 #3	.0074 .0068 .0048	.0116 .0107 .0109	.0010 .0006 0001	.0087 .0078 .0054	.0024 .0021 .0024	.0021 .0018 .0015	.0005
	Elem Avge SDev %RSD	Fe2599 .0333 .0016 4.928	K_7664 .7833 .0862 11.01	La3988 .0023 .0008 35.06	Li6707 .0111 .0022 19.83	Mg2790 .1275 .0049 3.809	Mn2576 .0019 .0000	Mo2020 .0012 .0009 78.65
	#1 #2 #3	.0345 .0339 .0314	.8679 .6956 .7863	.0033 .0017 .0021	.0128 .0118 .0086	.1279 .1322 .1225	.0019 .0019 .0019	.0009 .0004 .0022
	Elem Avge SDev %RSD	Na5889 587.1 1.0 .1621	Na3302 462.1 1.2 .2676	Nd4061 .0493 .0013 2.673	Ni2316 .0130 .0015 11.47	P_1782 .0410 .0091 22.18	Pb2203 .0044 .0042 94.72	S_1820 .0720 .0068 9.451
	#1 #2 #3		460.8 462.2 463.2	.0479 .0504 .0498	.0145 .0132 .0115	.0472 .0453 .0306	.0079 0002 .0055	.0678 .0799 .0681
	Elem Avge SDev %RSD	.1878 .0014	Sn1899 .0351 .0031 8.756	Sr4215 .0063 .0000	Te2142 .0153 .0127 83.36	Ti33490010 .0003 33.33	V_2924 .0018 .0004 20.93	Y_3710 .0068 .0014 20.53
	#1 #2 #3	.1889 .1883 .1862	.0363 .0316 .0373	.0063 .0063 .0063	.0125 .0042 .0292	0006 0010 0013	.0019 .0021 .0014	.0078 .0075 .0052
	Elem Avge SDev %RSD	.0176	Zr3391 .0005 .0001 25.52					·
	#1 #2 #3	.0188 .0182 .0158	.0004 .0006 .0004	B-26				

Analysis Report

Thu 09-09-93 11:49:09 AM

Operator: KFW

page 1

Method: GEN Sample Name: SF9-2

Run Time: 09/09/93 11:47:28

Comment: 3 % DIL

Mode: CONC Corr. Factor: 1

.0070

.0072

.0004

-.0000

Mode:	CONC COII.	ractor: 1	•				
Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	.0006	.0580	.0116	.0032	.0013	.0103	.5789
SDev	.0007	.0053	.0014	.0002	.0003	.0036	.0006
%RSD	109.2	9.050	12.02	5.094	22.28	34.45	.1050
#1	.0015	.0640	.0118	.0034	.0015	.0107	.5783
#2	.0002	.0550	.0129	.0031	.0010	.0066	.5791
#3	.0002	.0549	.0101	.0031	.0014	.0137	.5794
Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
Avge	.0002	.0108	.0004	.0023	.0027	.0016	.0006
SDev	.0003	.0059	.0002	.0008	.0006	.0007	.0002
%RSD	175.4	54.24	60.54	35.53	24.00	43.23	26.65
#1	.0004	.0172	.0001	.0033	.0034	.0024	.0008
#2	0002	.0056	.0006	.0017	.0021	.0012	.0005
#3	.0004	.0097	.0004	.0021	.0027	.0012	.0005
Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
Avge	.0668	.8105	.0029	.0058	.1321	.0025	.0014
SDev	.0011	.0954	.0014	.0002	.0056	.0002	.0007
%RSD	1.670	11.77	48.48	3.208	4.253	6.298	50.87
#1	.0669	.9088	.0044	.0060	.1385	.0026	.0013
#2	.0656	.8044	.0017	.0057	.1284	.0026	.0022
#3	.0678	.7182	.0025	.0057	.1293	.0024	.0008
Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	s_1820
Avge	588.7	465.7	.0504	.0065	.0459	.0057	.0695
SDev	2.7	1.8	.0057	.0002	.0115	.0024	.0022
%RSD	.4506	.3928	11.25	3.471	25.14	42.39	3.128
#1	585.8	463.8	.0569	.0063	.0396	.0071	.0671
#2	590.9	467.5	.0461	.0067	.0592	.0029	.0713
#3	589.4	465.9	.0484	.0066	.0389	.0070	.0702
Elem Avge SDev %RSD	Si2881 .2151 .0025 1.153	Sn1899 .0375 .0014 3.781	Sr1215 .0066 .0000 .0000	Te2142 .0076 .0027 35.88	Ti33490006 .0002 41.66	V_2924 .0015 .0005 32.94	Y_3710 .0016 .0004 27.73
#1	.2179	.0361	.0066	.0092	0003	.0021	.0020
#2	.2143	.0389	.0066	.0045	0008	.0011	.0011
#3	.2131	.0375	.0066	.0093	0006	.0014	.0017
Elem Avge SDev %RSD	Zn2138 .0074 .0004 5.420	Zr3391 .0005 .0005 109.9					<u>.</u>
#1	.0078	.0011					

Analysis Report Thu 09-09-93 11:51:13 AM page 1 Method: GEN Sample Name: SF9-3 Operator: KFW Run Time: 09/09/93 11:49:33 Comment: 3 X DIL Mode: CONC Corr. Factor: 1 Elem Aq3280 A13082 B 2496 Ba4934 Be3130 B12230 Ca3179 .0026 Avge .0771 .0134 .0037 .0005 .0193 .5646 SDev .0010 .0047 .0025 .0003 .0001 .0091 .0004 %RSD 38.71 6.055 --18.91 7.692 16.59 47.28 .0701 .0015 .0129 .0034 .0089 #1 .0718 .0005 .5650 .0040 .0004 .0033 #2 .0791 .0162 .0260 .5642 #3 .0032 .0805 .0112 .0037 .0005 .0231 .5646 Cr2677 Elem Cd2288 Ce4186 Co2286 Cu3247 Dv3531 Eu3819 .0030 .0040 .0032 .0027 © Avge .0004 .0252 .0011 #SDev .0008 .0042 .0008 .0011 .0009 .0009 .0004 SRSD 198.9 16.59 29.29 35.72 21.45 27.44 34.51 .0019 .0018 .0030 .0024 #1 .0001 .0204 .0007 .0047 .0041 -.0002 .0273 .0026 .0034 .0014 #3 .0013 .0280 .0035 .0038 .0043 .0032 .0012 K 7664 Fe2599 La3988 Li6707 Ma2790 Mn2576 Elem. Mo2020 Avae .0622 1.399 .0054 .0057 .1474 .0026 .0027 .0004 .0013 .0003 SDev .150 .0042 .0002 .0015 %RSD .7221 10.70 23.97 5.660 2.831 8.183 56.86 .0009 #1 .0618 1.249 .0039 .0054 .1429 .0024 #2 .0627 1.548 .0057 .0026 .0063 .1511 .0034 #3 .0620 1.399 .0060 .0060 .1482 .0028 .0038 Na5889 Na3302 Nd4061 Ni2316 P 1782 Pb2203 3 1820 Elem .0712Avge 582.3 464.1 .0664 .0065 .0428 .0174SDev 4.5 2.4 .0067 .0038 .0034 .0041 .0043 %RSD .7700 .5106 10.11 57.85 7.977 23.62 6.776 .0604 .0035 .0730 #1 587.4 466.6 .0396 .0148 #2 579.9 461.8 .0737 .0108 .0464 .0221 .0749 .0653 #3 579.4 464.1 .0053 .0425 .0153 .0658 Si2881 Sn1899 Sr4215 Te2142 V 2924 ¥ 3710 Elem Ti3349 .0037.0011.0395 .0065 .0003 Avge .2138 .0157 SDev .0041 .0018 .0001 .0112 .0008 .0001 .0003 71.53 %RSD 1.910 4.612 1.408 91.65 20.33 11.11 .0376 .2094 .0064 .0079 .0029 #1 .0000 .0010 #2 .2175 .0395 .0066 .0106 .0003 .0043 .0013 #3 .2145 .0413 .0066 .0285 .0005 .0038 .0011 Zn2138 Zr3391 Elem .0006 .0018 Avge

#1 .0004 .0011 #2 .0005 .0023 #3 .0008 .0021

.0002

33.30

SDev

%RSD

.0007

37.25

Method: GEN

Sample Name: blank for SFI70 SF7

Operator: KFW

Run Time: 09/09/93 10:42:30

Comment: 3 x dil Mode: CONC Corr

.0011

.0011

.0017

.0034

.0036

.0040

Mode:	CONC Corr	. Factor:	1			•	
Elem	Ag3280	Al3082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	.0064	.0391	.0221	.0031	.0004	.0184	.4315
SDev	.0004	.0011	.0022	.0001	.0001	.0015	.0025
%RSD	6.961	2.725	10.12	4.478	20.27	8.206	.5694
#1	.0061	.0380	.0201	.0031	.0005	.0186	.1287
#2	.0061	.0402	.0217	.0030	.0003	.0198	.1327
#3	.0069	.0390	.0245	.0032	.0004	.0168	.1331
Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
Avge	.0014	.0421	.0048	.0058	.0012	.0052	.0014
SDev	.0006	.0039	.0004	.0002	.0005	.0005	.0002
%RSD	44.63	9.140	8.246	3.946	41.66	9.287	11.17
#1	.0009	.0414	.0043	.0057	.0006	.0049	.0013
#2	.0012	.0387	.0050	.0056	.0013	.0049	.0013
#3	.0021	.0462	.0050	.0060	.0016	.0058	.0016
Elem	Fe25991017 .0005 .4879	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
Avge		1.889	.0086	.0068	.1336	.0006	.0048
SDev		.098	.0010	.0003	.0022	.0002	.0003
%RSD		5.209	ll.64	1.178	1.655	35.25	5.811
#1	1020	1.808	.0076	.0068	.1337	.0004	.0050
#2	1020	1.861	.0086	.0065	.1313	.0008	.0048
#3	1012	1.998	.0096	.0071	.1357	.0007	.0045
Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	s_1820
Avge	545.9	455.4	.0805	.0110	.0576	.0282	.0793
SDev	2.1	1.1	.0047	.0021	.0028	.0029	.0066
%RSD	.3822	.2499	5.792	13.15	4.807	10.19	8.390
#1	544.2	454.9	.0780	.0106	.0558	.0249	.0752
#2	548.3	456.7	.0777	.0091	.0607	.0299	.0757
#3	545.4	454.7	.0859	.0133	.0561	.0298	.0870
Elem	Si2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710
Avge	.0642	.0461	.0043	.0197	0012	.0048	.0015
SDev	.0021	.0043	.0015	.0080	.0002	.0004	.0001
%RSD	3.308	9.345	35.48	40.57	13.64	3.827	4.811
#1	.0627	.0423	.0034	.0128	0013	.0043	.0016
#2	.0633	.0452	.0034	.0178	0012	.0051	.0015
#3	.0667	.0507	.0061	.0285	0010	.0051	.0015
Elem Avge SDev ARSD	Zn2138 .0013 .0003 25.87	Zr3391 .0037 .0003 8.311			·		

	Analysis	Report					Thu	09	-09-93	10:	18:32 AM	:	page
	Method: Run Time Comment:	: 09/09/	93	Sample N 10:46:51		e: SFl				Ope	cator: K	FW	
	Mode: CO			Factor:	1						_		
	Elem Avge SDev %RSD	Ag3280 .0081 .0003 3.812		A13082 .0916 .0037 4.047		B_2496 .0152 .0014 9.169	Ba4934 .0047 .0001 1.698		Be3130 .0003 .0000 .6822	1	Bi2230 .0325 .0042 12.85		Ca3179 .5849 .0016 .2784
	#1 #2 #3	.0078 .0081 .0084		.0875 .0948 .0924		.0166 .0150 .0139	.0046 .0048 .0048		.0003 .0003 .0003		.0286 .0369 .0321		.5835 .5867 .5847
End End	GElem Avge SDev %RSD	Cd2288 .0017 .0005 26.97		Ce4186 .0559 .0020 3.652		Co2286 .0073 .0002 3.133	Cr2677 .0079 .0001 1.103		Cu3247 .0040 .0002 4.558		Dy3531 .0068 .0002 2.368		Eu3819 .0020 .0001 6.818
2	%RSD #1 #2 #3	.0012 .0018 .0021		.0542 .0581 .0553		.0075 .0073 .0071	.0080 .0078 .0080		.0038 .0041 .0041		.0066 .0069 .0069		.0019 .0020 .0022
	Elem Avge SDev %RSD	Fe2599 0366 .0007 1.779		K_7664 2.474 .110 4.442		La3988 .0119 .0003 2.110	Li6707 .0074 .0006 8.219		Mg2790 .1825 .0052 2.825		Mn2576 .0027 .0001 3.039		Mo2020 .0066 .0006 9.463
	#1 #2 #3	0373 0363 0361		2.348 2.552 2.521		.0116 .0121 .0119	.0068 .0074 .0080		.1823 .1877 .1774		.0027 .0027 .0028		.0063 .0063 .0074
	Elem Avge SDev %RSD	Na5889 548.8 1.0 .1804		Na3302 455.3 .8 .1739		Nd4061 .0946 .0019 2.024	Ni2316 .0119 .0024 20.46		P_1782 .0706 .0068 9.684		Pb2203 .0449 .0029 6.446		S_1820 .1015 .0039 3.856
	#1 #2 #3	549.9 548.7 547.9		456.2 454.9 454.7		.0925 .0962 .0952	.0120 .0095 .01 11		.0641 .0778 .0699		.0419 .0477 .0451		.1059 .0998 .0986
	Elem Avge SDev %RSD	Si2881 .2214 .0025 1.117		Sn1899 .0513 .0012 2.392		Sr4215 .0069 .0000 .0000	Te2142 .0186 .0068 36.74		T13349 .0014 .0001 6.415		V_2924 .0071 .0006 7.982		Y_3710 .0018 .0000 .0000
	#1 #2 #3	.2192 .2210 .2241		.0509 .0527 .0503		.0069 .0069 .0069	.0258 .0178 .0122		.0014 .0015 .0014		.0068 .0077 .0068		.0018 .0018
	Elem Avge SDev BRSD	Zn2138 .0088 .0001 1.282		Zr3391 .0049 .0003 4.974									
	#1 #2 #3	.0087 .0089 .0088		.0047 .0051 .0051		B-30							

Analysis Report Thu 09-09-93 10:50:44 AM page 1

Operator: KFW Method: GEN Sample Name: SF2

Run Time: 09/09/93 10:49:04 Comment: 3 x dil

Mode: Comment	: 3 x dil ONC Corr.	. Factor: 1	L	•			
Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	.0104	.1104	.0175	.0054	.0003	.0384	.5268
SDev	.0006	.0016	.0013	.0001	.0000	.0018	.0010
%RSD	5.631	1.486	7.307	1.493	.3485	4.723	.1922
#1	.0101	.1110	.0183	.0053	.0003	.0404	.5278
#2	.0110	.1117	.0161	.0055	.0003	.0380	.5270
#3	.0099	.1085	.0183	.0053	.0003	.0369	.5258
 Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
Avge	.0026	.0715	.0097	.0106	.0056	.0091	.0026
SDev	.0003	.0008	.0003	.0001	.0002	.0003	.0001
%RSD	13.33	1.174	2.725	.8135	3.268	3.095	3.039
 #1 #2 #3	.0024 .0030 .0024	.0724 .0713 .0708	.0098 .0094	.0105 .0106 .0106	.0057 .0057 .0054	.0091 .0094 .0088	.0026 .0027 .0026
Elem Avge SDev %RSD	Fe25990354 .0001 .2812	K_7664 3.148 .114 3.630	La3988 .0159 .0008 5.272	Li6707 .0090 .0007 7.785	Mg2790 .1944 .0024 1.245	Mn2576 .0033 .0001 2.510	Mo2020 .0077 .0006 8. 1 57
#1	0353	3.129	.0160	.0086	.1960	.0032	.0070
#2	0355	3.271	.0167	.0098	.1955	.0034	.0083
#3	0355	3.045	.0150	.0086	.1916	.0032	.0079
Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	s_1820
Avge	539.8	448.9	.1172	.0168	.0709	.0591	.0986
SDev	2.3	1.2	.0050	.0005	.0066	.0020	.0047
%RSD	.4342	.2649	4.276	2.768	9.364	3.331	4.809
#1	541.4	449.8	.1157	.0166	.0785	.0589	.093 1
#2	537.1	447.5	.1228	.0166	.0676	.0611	.1026
#3	540.8	449.3	.1131	.0174	.0665	.0572	.1000
Elem	Si2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710
Avge	.2246	.0525	.0070	.0281	.0024	.0091	.0023
SDev	.0015	.0012	.0000	.0061	.0002	.0003	.0001
%RSD	.6775	2.234	.0000	21.61	9.962	3.089	6.298
#1	.2246	.0537	.0070	.0327	.0025	.0090	.0022
#2	.2261	.0524	.0070	.0305	.0026	.0095	.0025
#3	.2231	.0514	.0070	.0212	.0021	.0090	.0022
Elem Avge SDev %RSD	Zn2138 .0119 .0009 7.461	Zr3391 .0064 .0001 1.893					
#1 #2 #3	.0110 .0119 .0128	.0064 .0064		B-31			

Analysis Report Thu 09-09-93 11:02:29 AM page 1

Method: GEN Sample Name: SF4 Operator: KFW

Run Time: 09/09/93 11:00:48

Comment: 3 X DIL

N	1ode:	CONC Corr.	Factor: 1				-	-
	Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
	Avge	.0148	.1483	.0212	.0064	.0058	.0498	.5560
	SDev	.0017	.0070	.0011	.0004	.0013	.0022	.0009
	%RSD	11.47	4.724	5.370	6.641	22.38	4.314	.1668
	#1	.0142	.1466	.0215	.0063	.0073	.0522	.5550
	#2	.0134	.1424	.0199	.0060	.0051	.0481	.5564
	#3	.0167	.1561	.0221	.0068	.0050	.0492	.5567
	Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
	Avge	.0089	.0983	.0127	.0199	.0097	.0125	.0037
	SDev	.0011	.0096	.0014	.0017	.0010	.0010	.0004
	%RSD	12.75	9.741	11.41	8.679	10.60	7.731	9.922
7236	17 1	.0102 .0084 .0081	.0941 .0915 .1092	.0119 .0119 .0144	.0211 .0179 .0208	.0092 .0089 .0108	.0119 .0119 .0136	.0035 .0034 .0041
	Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
	Avge	0248	4.149	.0224	.0163	.2217	.0037	.0116
	SDev	.0007	.437	.0023	.0014	.0093	.0001	.0004
	%RSD	2.623	10.54	10.44	8.402	4.187	2.221	3.610
	#1	0241	3.980	.0217	.0177	.2176	.0036	.0112
	#2	0253	3.820	.0205	.0150	.2151	.0036	.0119
	#3	0251	4.645	.0250	.0162	.2323	.0038	.0119
	Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	S_1820
	Avge	540.2	451.9	.1461	.0282	.0843	.0845	.1154
	SDev	5.8	4.5	.0129	.0016	.0062	.0091	.0022
	%RSD	1.080	.9922	8.820	5.762	7.358	10.81	1.930
	#1	541.8	453.7	.1390	.0297	.0895	.0798	.1156
	#2	545.1	455.3	.1384	.0265	.0860	.0787	.1130
	#3	533.8	446.8	.1610	.0283	.0775	.0951	.1174
	Elem	Si2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710
	Avge	.2546	.0588	.0072	.0299	.0040	.0127	.0085
	SDev	.0038	.0024	.0001	.0155	.0004	.0012	.0012
	%RSD	1.482	4.086	1.246	51.74	11.40	9.498	14.25
	#1	.2547	.0590	.0072	.0127	.0037	.0122	.0099
	#2	.2507	.0563	.0072	.0343	.0037	.0119	.0076
	#3	.2583	.0611	.0073	.0427	.0045	.0141	.0080
	Elem Avge SDev SRSD	Zn2138 .0223 .0010 4.501	Zr3391 .0090 .0009 9.566				,	
	#1 #2 #0	.0235 .0215 .0219	.0085 .0085 .0100	B-32	!			

3.742

.0115

.0124

.UII3

BRSD

#1

#2

#3

7.783

.0053

.0061

.0055

94.3276.1B26

Thu 09-09-93 11:06:35 AM

page l

Method: GEN Sample Name: SF5 Operator: KFW Run Time: 09/09/93 11:04:55 Comment: 3 X DIL Mode: CONC Corr. Factor: 1

М	ode:	CONC Corr.	Factor: 1	-			-	
	Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
	Avge	.0094	.1087	.0185	.0051	.0008	.0361	.5907
	SDev	.0009	.0036	.0012	.0001	.0001	.0066	.0008
	%RSD	9.538	3.272	6.296	1.575	9.896	18.22	.1334
	#1	.0084	.1050	.0189	.0050	.0009	.0405	.5899
	#2	.0101	.1120	.0172	.0052	.0009	.0392	.5915
	#3	.0098	.1090	.0194	.0050	.0007	.0285	.5907
•	Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
	Avge	.0027	.0635	.0085	.0099	.0053	.0077	.0023
	SDev	.0003	.0070	.0009	.0011	.0007	.0007	.0003
	&RSD	11.11	11.05	10.82	10.88	12.49	9.544	12.00
	#1	.0030	.0573	.0075	.0087	.0048	.0072	.0020
	#2	.0027	.0711	.009 1	.0108	.0061	.0086	.0026
	#3	.0024	.0620	.0087	.0102	.0051	.0074	.0023
1	Elem	Fe2599	K_7664	La3988	116707	Mg2790	Mn2576	Mo2020
	Avge	0312	2.818	.0138	.0088	.1963	.0028	.0075
	SDev	.0006	.204	.0014	.0005	.0070	.0001	.0010
	&RSD	1.988	7.221	9.860	5.267	3.569	2.887	13.35
7	#1	0317	2.592	.0123	.0083	.1387	.0028	.0065
	#2	0305	2.987	.0149	.0092	.2024	.0029	.0075
	#3	0313	2.876	.0141	.0089	.1980	.0028	.008≟
3	Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	S_1820
	Avge	549.2	460.0	.1042	.0174	.0777	.0532	.0987
	SDev	5.1	2.4	.0096	.0013	.0088	.0041	.0036
	KRSD	.9225	.5109	9.174	7.283	11.37	7.736	3.615
‡	1	554.7	462.7	.0951	.0160	.0677	.0491	.1027
	2	544.8	458.3	.1142	.0178	.0842	.0532	.0959
	3	548.0	459.0	.1034	.0184	.0813	.0573	.0974
2	Elem	Si2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710
	Lvge	.2124	.0508	.0071	.0296	.0017	.0085	.0021
	BDev	.0020	.0042	.0001	.0045	.0004	.0006	.0002
	GRSD	.9261	8.338	1.274	15.36	22.88	7.638	7.901
#	1	.2106	.0465	.0070	.0270	.0014	.0080	.0022
	2	.2145	.0508	.0070	.0269	.0021	.0092	.0026
	3	.2121	.0550	.0072	.0348	.0017	.0082	.0025
3	lem vge Dev	Zn2138 .0119 .0004	Zr3391					

Analysis Report

Thu 09-09-93 11:08:45 AM page 1

Method:	GEN	Sample Name: SF6	Operator: KFW

Run Time: 09/09/93 11:07:05 Comment: 3 X DIL Mode: CONC Corr. Factor:

ì	Mode:	CONC Corr.	Factor:	1				
	Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
	Avge	.0111	.1349	.0186	.0059	.0008	.0433	.5947
	SDev	.0007	.0065	.0006	.0002	.0001	.0100	.0008
	%RSD	6.396	4.802	3.469	3.580	10.51	23.10	.1346
	#1	.0107	.1288	.0182	.0057	.0007	.0398	.5939
	#2	.0107	.1340	.0194	.0059	.0007	.0356	.5947
	#3	.0119	.1417	.0182	.0061	.0009	.0547	.5955
28-27 26-182	0 7 4 5	Cd2288 .0033 .0009 27.28	Ce4186 .0727 .0024 3.277	Co2286 .0100 .0008 8.052	Cr2677 .0117 .0003 2.209	Cu3247 .0067 .0006 9.524	Dy3531 .0094 .0003 2.997	Eu3819 .0027 .0002 5.973
	#1	.0024	.0700	.0101	.0115	.0067	.0094	.0026
	#2	.0033	.0735	.0091	.0115	.0061	.0091	.0026
	#3	.0042	.0746	.0107	.0120	.0073	.0097	.0029
	Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
	Avge	.0064	3.244	.0164	.0091	.2171	.0042	.0089
	SDev	.0005	.178	.0008	.0007	.0047	.0002	.0007
	%RSD	7.167	5.487	4.576	7.698	2.155	3.936	8.261
	#1	.0069	3.120	.0156	.0083	.2142	.0041	.0081
	#2	.0060	3.164	.0164	.0095	.2146	.0041	.0095
	#3	.0062	3.448	.0171	.0095	.2225	.0044	.0090
	Elem	Na5889	Na3302	Nd4061	Ni2316	F_1782	Pb2203	S_1820
	Avge	548.6	459.8	.1178	.0177	.0821	.0631	.1102
	SDev	3.2	1.4	.0049	.0009	.0062	.0067	.0049
	%RSD	.5889	.3084	4.166	4.844	7.519	10.60	4.437
	#1	550.6	461.3	.1141	.0170	.0815	.0615	.1151
	#2	550.3	459.6	.1159	.0174	.0885	.0574	.1053
	#3	544.9	458.4	.1234	.0187	.0762	.0705	.1103
	Elem Avge SDev %RSD	.2936 .0019	Sn1899 .0543 .0007 1.299	Sr4215 .0075 .0000 .0000	Te2142 .0355 .0033 9.409	Ti3349 .0037 .0002 4.949	V_2924 .0100 .0004 3.733	Y_3710 .0026 .0001 4.839
	#1	.2940	.0548	.0075	.0317	.0036	.0100	.0026
	#2	.2915	.0546	.0075	.0367	.0036	.0097	0025
	#3	.2952	.0535	.0075	.0381	.0039	.0104	.0027
	Elem Avge SDev RSD	.0114 .0001	Zr3391 .0070 .0004 5.275	,				
	#1 #2 #3	-0114	.0068 .0068 .0074	В•	-34			

Analysis Report

Thu 09-09-93 11:10:56 AM

page l

Method: GEN Sample Name: SF7 Operator: KFW

Run Time: 09/09/93 11:09:16

Comment: 3 X DIL

Mode: CONC Corr. Factor: 1

моде:	CONC COFF.	. Factor:	1				
Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	.0119	.1329	.0184	.0057	.0006	.0400	.5479
SDev	.0005	.0009	.0008	.0001	.0001	.0111	.0019
%RSD	4.169	.7175	4.542	2.419	13.09	27.64	.3398
#1	.0113	.1326	.0177	.0056	.0006	.0285	.5483
#2	.0123	.1321	.0193	.0059	.0006	.0409	.5459
#3	.0121	.1339	.0182	.0057	.0007	.0505	.5495
Elem	Cd2288	Ce1186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
Avge	.0027	.0776	.0104	.0122	.0075	.0096	.0028
SDev	.0003	.0037	.0003	.0002	.0007	.0006	.0001
%RSD	11.11	4.814	3.365	1.857	8.796	6.085	2.839
#1	.002 1	.0738	.0101	.0120	.0070	.0091	.0027
#2	.0027	.0813	.0107	.0124	.0073	.0102	.0029
#3	.0030	.0778	.0103	.0123	.0083	.0094	.0029
Elem Avge SDev %RSD	Fe25990124 .0005 4.163	K_7664 3.463 .091 2.631	La3988 .0175 .0008 4.336	L16707 .0093 .0003 3.765	Mg2790 .2153 .0050 2.337	Mn2576 .0036 .0001 2.279	Mo2020 .0100 .0008 7.579
#1	0124	3.368	.0168	.0089	.2097	.0035	.0097
#2	0129	3.550	.0183	.0095	.2195	.0036	.0108
#3	0119	3.470	.0175	.0095	.2166	.0036	.0094
Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	S_1820
Avge	543.7	457.4	.1250	.0192	.0855	.0733	.1008
SDev	3.1	1.8	.0022	.0006	.0013	.0032	.0041
%RSD	.5636	.3924	1.785	3.070	1.468	4.304	4.064
#1	547.0	458.2	.1225	.0185	.0866	.0704	.1017
#2	541.0	455.3	.1268	.0194	.0858	.0729	.0964
#3	543.0	458.6	.1256	.0197	.0842	.0766	.1044
Elem Avge SDev %RSD	Si2881 .2536 .0015 .5977	<pre>sn1899 .0573 .0013 2.213</pre>	Sr 1215 .0073 .0001 1.237	Te2142 .0225 .0032 14.08	Ti3349 .0035 .0002 5.170	V_2924 .0104 .0004 3.607	Y_3710 .0026 .0002 7.274
#1	.2521	.0575	.0072	.0261	.0034	.0099	.0025
#2	.2535	.0585	.0073	.0210	.0037	.0107	.0029
#3	.2551	.0560	.0073	.0203	.0034	.0104	.0026
Elem Avge SDev %RSD	Zn2138 .0082 .0002 2.034	Zr3391 .0073 .0002 3.356					
#1 #2 #3	.0081 .0081 .0084	.0070 .0074 .0074	В	-35		-	

ICP ANALYSIS ON FUSED SAMPLES

Analytical and Process Support Laboratory

1.0 ICP Analysis

The solutions from the fused samples were analyzed on the ICP at 324 Building

2.0	Leb No	o	0
3.0	Customer	Rick Merrill	Rick Merrit
4.0	Customer's ID	8F-2 1005FR-2	SF-2 160-SFR-2
5.0	Fusion Method	KOH Ne2O2	KOH Na2O2
6.0	Semple Wt	0.276 g 0.288 g	0.276 g 0.288 g
7.0	Dilution	2500 mL 2500 mL	2500 mL 2500 mL

.0	A.	alvei	

Analysis		
	Wt %	Wt %
Element	Element	Element
Ag	0.009%	-0.004%
Al	8.069%	8.158%
В	-0.009%	-0.009%
Ba	0.082%	0.080%
Be	-0.003%	-0,003%
Bi	-0.054%	-0.052%
Ca	6,268%	5.735%
Cd	-0.005%	-0.005%
Ce	0.061%	-0.035%
Co	0.016%	-0.009%
Cr	0.022%	0.029%
Cu	0.013%	0.007%
Dy	-0.005%	-0.005%
Eu	-0.004%	-0.003%
Fe	4.241%	3.885%
K		2.063%
La	0.016%	0.014%
Li	0.007%	0.004%
Mg	1.187%	1.091%
Mn	0.081%	0.068%
Mo	0.017%	0.014%
Na	4.193%	
Nd	0.054%	0.056%
Ni		0.042%
Р	0.123%	0.146%
Pb	0.134%	0.100%
S	-0.072%	-0.069%
Si	29.090%	27.111%
Sn	-0.072%	-0.069%
Sr	0.037%	0.039%
Te	-0.054%	-0.052%
Ti	0.566%	0.528%
V	0.022%	0.020%
Y	0.004%	0.004%
Zn	0.033%	0.036%
Zr	0.034%	
	0.03778	

			Average	Percent
	Wt %	Wt %	Wt %	Deviation
Oxide	Qxide	Oxide	Oxide	Oxida
Ag20	0.009%	-0.005%	0.00%	612%
AI203	15.247%	15.414%	15.33%	-1%
B203	-0.029%	-0.028%	-0.03%	4%
BaO	0.092%	0.090%	0.09%	2%
BeO	-0.008%	-0.007%	-0.01%	4%
Bi2O3	-0.061%	-0.058%	-0.06%	4%
CaO	8.770%	8.025%	8.77%	
CqO	-0.006%	-0.006%	-0.01%	4%
CeO2	0.075%	-0.043%	0.02%	735%
Co203	0.022%	-0.012%	0.00%	706%
Cr203	0.032%	0.042%	0.04%	-27%
CuO	0.016%	0.009%	0.01%	60%
Dy203	-0.006%	-0.006%	-0.01%	4%
Eu203	-0.004%	-0.004%	0.00%	4%
Fe203	6.063%	5.553%	5,81%	9%
K20		2.485%	2.49%	
Le203	0.019%	0.016%	0.02%	17%
Li2O	0.014%	0.010%	0.01%	40%
MgO	1,969%	1.810%	1.89%	8%
MnO	0.128%	0.107%	0.12%	18%
MoO3	0.025%	0.021%	0.02%	17%
Ne20	5.651%		5.65%	
Nd203	0.063%	0.065%	0,06%	4%
NiO		0.053%	0.05%	
P205	0,282%	0.334%	0.31%	-17%
РьО	0.145%	0.107%	0.13%	30%
503	-0.181%	-0.173%	-0.18%	4%
SiO2	62.228%	57.994%	60,11%	7%
SnO2	-0.092%	-0.088%	-0.09%	4%
SrO	0.043%	0.047%	0.04%	-8%
TeO2	-0,068%	-0.065%	-0.07%	4%
TiO2	0,945%	0.880%	0.91%	7%
V02	0.035%	0.032%	0.03%	10%
Y203	0.005%	0.005%	0.01%	2%
ZnO	0.041%	0.045%	0.04%	-10%
Z-O2	0.047%		0.05%	1

102.0%

9.0	Sub-totel =		54.30%		40.23%	
		K-	2.063%	Nom	4,193%	
		Ni-	0.042%	Zr=	0.034%	
10.0	Total =		56.48%		53.45%	

	404 50		20.004
NO-	0.053%		0.047%
K20=	2.485%	Na20-	5.651%
Sub-meni -	101.065%		\$3.90e%

11.0 Note: The KOH fusion is performed in a nicital metal crucible. Thus potassium and nicital reported are values obtained from the Ne202 /2r fusion. The Ne202 fusion is performed in ziroonium metal crucible. Thus the Zr and Ne reported are values obtained from the KOH/Ni fusion.

12.0 Comment:

At low concentration of Ca, the Na2O2 fusion is not included in the everage value.

Negetive values reported in this procedure are at or below the estimated detection limit for the ICP/AES procedure.

12.0 Calculated by and date

13.0 Approved by and date

ICP ANALYSIS ON FUSED SAMPLES **Analytical and Process Support Laboratory**

1,0	Leb No		
2.0	Customer		Rick Merril
3.0	Customer's Semple ID		
4.0	Fusion Method	кон	Na202
5.0	Sample Wt	0.2760	0.2880
6.0	Dilution	2500	2500

7.0 ICP Analysis

The fusions were performed by the Analytical and Support Laboratory.

The solutions from the fused samples were analyzed on the ICP at 324 Building.

		Determine		KOH WA %	Consum	Me202 Wt%		Conversion	KOH WAS		84202 W/%
	Berert	Limit	Come hygint)	Chambers.	Core (ng/mt)	-	مقشدي	Fanner	Quide.		Chádo
	Ag	0.005	0.00944	0.009%	-0,04003	-0.004%	AgO	1.0743	0.009%		-0.005%
	Al	0.03	8.90906	2.069%	9,39769	8.158%	A1203	1.8895	15.247%		15.414%
	В	0.01	0.00825	-0.009%	-0.00163	-0.009%	B203	3.2202	-0.029%		-0.028%
	Be	0.003	0,00065	0.082%	0.09249	0.080%	BeO	1.1165	0.092%		0.090%
	8•	0.003	0,00055	-0.003%	0.00125	-0.003%	BeO	2.7752	-0,008%		-0.007%
	81	0.06	0.04921	-0.054%	0.04764	-0.052%	Bi203	1.1148	-0.061%		-0.058%
	Ca	0.01	6,91939	6.268%	6.0000	5.735%	CeO	1.3992	8.770%		8.025%
	Cd	0.006	0.00476	-0.005%	0,00281	-0.005%	CdO	1.1423	-0.006%		-0.005%
	Ce	0.04	0.06702	0.061%	-0.24094	-0.035%	CeO2	1.2284	0.075%		-0.043%
	Co	0.01	0,01716	0.016%	0,00964	-0.009%	Co203	1.4073	0.022%		-0.012%
	Cr	0.02	0.02418	0.022%	0.03295	0.029%	Cr203	1.4618	0.032%		0.042%
	Cu	0.006	0.01409	0.013%	0.00795	0.007%	CuO	1.2517	0.016%		0.009%
	Dy	0.006	0.00585	-0.005%	0.00501	-0.005%	; ^l Dy203	1.1477	-0.006%		-0.006%
	Eu	0.004	0.00197	-0.004%	0.00212	-0.003%	Eu203	1.1579	-0.004%		-0.004%
	Fe	0.005	4.68184	4.241%	4,47495	3.885%	Fe203	1.4296	6.063%		5.553%
	K	0.3	430,1465		2.37893	2,063%	K20	1.2046			2.485%
	Le	0.01	0.01807	0.016%	0,01598	0.014%	Le203	1.1728	0.019%		0.016%
	Li	0.005	0.00735	0.007%	0.00512	0.004%	U20	2.1527	0.014%		0.010%
	Mg	0.06	1.31062	1.187%	1.25683	1.091%	MgO	1.0586	1.969%		1.810%
	Mn	0.003	0.06949	0.081%	0.07814	0.068%	MnO	1.5825	0,128%		0.107%
	Mo	0.01	0.01826	0.017%	0.01811	0.014%	MoO3	1.5004	0.025%		0.021%
	Na	0.05	4.62852	4.183%	403.1309		Ne20	1,348	5.651%		
		1 1	5.10728		409,8064						
	Nd	0.02	0.0596	0.054%	0.06443	0.056%	Nd203	1.1664	0.063%		0.065%
	Ni	0.02	1,84675		0.04787	0.042%	NiO	1.2725			0.053%
	P	0.08	0.13576	0.123%	0.16807	0.146%	P205	2.2913	0.282%		0.334%
	Pb	0.08	0.14817	0.134%	0.1148	0.100%	PbO	1.0777	0.145%		0.107%
	S	0.08	0,04330	-0.072%	-0.01537	-0.069%	803	2.4967	-0.181%		-0.173%
	Si	0.01	32,11549	29.090%	31,23149	27.111%	SiO2	2.1391	62,228%		57.994%
	Sn	0.08	0,05363	-0.072%	0.05166	-0.069%	SnO2	1.2696	-0.092%		-0.068%
	Sr Sr	0.003	0.04033	0.037%	0.04537	0.039%	SrO	1.1827	0.043%		0.047%
	Te	0.06	0.0547	-0.054%	0.03919	-0.052%	TeO2	1.2508	-0.06B%		-0.065%
	Ti	0.003	0.62529	0.566%	0.60769	0.528%	TiO2	1.6681	0.945%		0.890%
	٧	0.01	0,02395	0.022%	0.02254	0.020%	VO2	1.6282	0.035%		0.032%
	Y	0.003	0.00450	0.004%	0.00436	0.004%	Y203	1.2699	0.005%		0.005%
	Zn	0.01	0.03607	0.033%	0.04163	0.036%	ZnO	1,2448	0.041%		0.045%
	Zr	0.01	0,03605	0.034%	15.30318		Z:02	1.3508	0.047%		
			1000		1000						
.0			Sub-total =	54.38%		49.23%	54	sis-totel =	101.965%		93,144%
			The K-	2.063%	Plus No-	4.193%		Phot #20	2,485%	Plus Hediti	5.651%
			Plus Him	0.042%	N=2r=	0.034%		Plan MIO	0.053%	Flux 2:02	0.047%
0			Total =	56.48%	•	\$3.45%		Total -	104.503%		26.842%
0.0	Note: The	KOH fusio	s is seriormed in	والمحمد المطابات م	rucible. Thus poteniu	e and richal res	orted are				

The KOH fusion is performed in a nickel metal crucible. Thus potentium and nickel reported are values obtained from the Ne2O2 /Zr fusion. The Ne and Zr reported on the Ne2O2/Zr crucible are values obtained from the KOH/NS fusion. 10.0

Analytical and Process Support Laboratory ICP ANALYSIS ON FUSED SAMPLES

			100	****	***************************************	X417	4.000	4.051%	2.091%	45.74	-0.011%	E.029%	4.651%	-F.085%	***		7010	7.000	1.916%	0.116%	A.013%	A.042%	6.436%	1 22%	0.067%	44.57	4.673%	0.04E%	A. 657.X	1417	£.083%	*****		*****	4,989,4	F 1855 X	7.0%	
																																		1	Place NABOR	75e 2/01	į	
			100 A	-0.004%	12.316%	4131%	4.887%	4.650%	*****	A 0.00 A	4.011%	4.023%	8.854%	4.845%	£ 004%	7.673%	-0 00000	F. 005%	2,062%	0.127%	A. C. C. C. C.	*****		*222	4.863%	# C 4 C 7	4.680%	6.944%	B.859%	11197	0.003%	0.859%	0.655%	95.050%	1.536%	F-658%	36.62%	ď
				1.07428	1.88955	1.1165	2.77519	1.11484	1.3992	1.14235	1.40726	1.46184	1.25169	1.14769	1.15794	1.42963	1206	21574	1.65252	1.58245	1.50042	1 3670	1.27253	2.29128	1.077	2 12014	1,26961	1.18272	1.25078	1.06306	1.26958	1,24476	1.3506	1	7e 130	N. M. M.	į	n the Na2O2/2r fluide la.
			į	\$	Azos	5 5	2	B4203	8	9 §	3 5	02203	g	Dy203	Eu203	Fe203	9	Š	Š	Meo	MeQ3		Š	200	<u>2</u>	5 5	50	Ş	1,00	50 £	1202	Q 8 2	ZQZ					ses obtained from
	N#202 0.3280 2500	按	18 20 TH	4.884%	6.186%	-4.665% = 11.6%	4.802%	-4.846%	5.70%	-0.005%		B. 67.0%	2.041%	-0.005%	-0.903%	4.631%	1778	4.04.74 - 0.00.44	1.155%	£673%	0.009%	73,54	1.00%	4.141%	6.862%	-0.061%	-6.861%	8.641%	-6.846%	6.672% entre	6.863%	4.627%		45.92%	3.476%	0.841%	49.44%	laickel reported are wals the XOH flacon uning th
900 AUSA SFR-2 Purred Soil R Merritt Dess 11	, , ,	Laboratory. ICP at 324 Buildi		0,0303	8,01114	0.00478	0,00063	0.02754	7.58679	0.00129	0.17985	10000	80,0	0.00218	0.00129	6.07537	1.04613	0.0112	1.51584	0.09638	0.01163	394.4639B	0.04914	0.18501	0.08127	0.02171	0.05381	0.0633	0.04422	0.00199	0.00345	0.03583	10.78126	1	7	72.57	į	flee potamines ead lace obtained from
	КОН 0,3170 2500	ICP Analysis The fusions were performed by the Analytical and Support Laboratory. The scaletons from the fused semples were smalyzed on the ICP at 324 Building.	54 W 360X		6.512%	0.011%	-0.002%	4.647%	5.991%	-6.805%	4.62%	77710	6.943%	-0.065%	-0.003%	4.947%		****	120%	4.080%	6.009%	3.476%		0.145%	4.663%		4.863%	4.03%	-1.67%	6.713%	A. 0.02 %	B.043%	6.041%	54.77%	1,178%	0.030%	52.07%	New: The KOH fusion is performed in a sickel metal cruckle. Thus potentism and nickel reported are velous obtained from the Na2O2/2s fusion. The Na and 2s reserved on the Na2O2/2s cruckle are values obtained from the KOH fusion using the nickel cruckle.
_		ormed by the /	1	0.00065	8,26459	0.01373	0.14448	0.01846	7.58616	0.00113	0.0169	0.00/3	0.05448	0.00121	0.00057	6.27326	367.7706	0.00085	1.57628	0.10181	0,01063	4,40785	810.0	0.18348	0.06784	0.06532	34.05078	0.04746	0.02700	0.90445	/06200	90000	0.05148	1	Ž	Ĭ	į	is parformed in .
Lab No Deta File No Curboner Curboner	/ethod Wi	dysis ons were parfe cions from the		1 8	9,0	0.01	0.003	8	0.01	900'0	3 3	5 8	9000	900	90.0	0.003	3	0.0	200	0.003	0.01	900	8 8	0	90.0	8 3	5 6	000	99	0.003		00	0.01					P You mad Ze p
		-] >	2	ø,	3 . #	B	đ	ខ	8 6	3 6	3 8	à	` 超	£	×	3 :	!	2	2	2	2 2	<u>.</u>	£	•o ī	8 §	j	ß	;	> >	. 2	ä				_	
0.26	0.00	8								٠																								9.0			0.0	11.0

1980-9728 1119

WHC-SD-EN-TI-240, Rev. 0

ICP ANALYSIS ON FUSED SAMPLES

Analytical and Process Support Laboratory

enalyzed on the ICP at 324 Building

## NACO 2 2/00 NACO 2/00 N	
0.328 WY % Ocida -0.841% -0.841% -0.841% -0.851% -0.8	Oncido Ontido ANT % ANZO 4.845% ANZO 11.316% BACO 8.1315% BACO 8.1315% BACO 4.845% CACO 4.845% ENZO 4.855%
0.328 WY % Obids -0.441% -0.441% -0.441% -0.451% -0.4	
	11.51 11

WHC-SD-EN-TI-240, Rev. 0

TCLP for Rad Samples: 1005011;3605011;1605FR 12+3;3005FR1,2,+3

Analysis Report

Fri 12-03-93 04:15:53 PM

page 1

Operator: gaw Sample Name: blank Method: GEN

Run Time: 12/03/93 16:14:28

Comment: as a sample

Mode: CONC Corr. Factor: 1

Mode:	CONC Corr.	Factor: 1					
Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
Avge	.0016	.0162	.0121	.0018	.0001	.0063	.3845
SDev	.0007	.0029	.0005	.0002	.0001	.0050	.0038
%RSD	42.36	18.15	4.445	8.882	60.88	79.42	.9826
#1	.0024	.0195	.0127	.0019	.0001	.0099	.3882
#2	.0011	.0140	.0116	.0019	.0001	.0006	.3806
#3	.0015	.0150	.0121	.0016	.0002	.0084	.3847
Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
EAvge	.0006	.0153	.0021	.0020	.0009	.0017	.0006
SDev	.0010	.0053	.0008	.0010	.0003	.0004	.0002
%RSD	156.2	34.78	36.48	48.48	38.49	23.97	26.65
#1	.0003	.0213	.0026	.0031	.0011	.0021	.0008
#2	0002	.0128	.0026	.0013	.0011	.0016	.0005
#3	.0017	.0116	.0012	.0015	.0005	.0013	.0005
Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
Avge	.0081	.6942	.0028	.0038	.0884	.0005	.0037
SDev	.0011	.1452	.0008	.0004	.0066	.0001	.0011
%RSD	13.09	20.92	29.42	10.91	7.485	24.74	29.33
#1	.0090	.8526	.0038	.0038	.0960	.0005	.0037
#2	.0069	.6625	.0022	.0043	.0839	.0005	.0026
#3	.0083	.5674	.0024	.0034	.0854	.0003	.0048
Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	S_1820
Avge	489.2	475.9	.0490	.0128	.0726	.0278	.0882
SDev	5.5	2.9	.0036	.0032	.0066	.0078	.0037
%RSD	1.117	.6189	7.313	24.69	9.062	28.07	4.183
#1	483.3	472.5	.0530	.0164	.0754 · .0650 .0773	.0358	.0916
#2	494.1	477.7	.0480	.0117		.0276	.0843
#3	490.2	477.5	.0460	.0103		.0202	.0886
Elem	Si2881	Sn1899	Sr4215	Te2142	Ti33490010 .0003 32.48	V_2924	Y_3710
Avge	.0341	.0669	.0055	.0169		.0016	.0004
SDev	.0044	.0028	.0001	.0078		.0005	.0002
%RSD	12.81	4.145	1.732	46.30		32.59	38.49
#1	.0385	.0682	.0055	.0255	0012	.0023	.0006
#2	.0298	.0688	.0054	.0151	0012	.0013	.0003
#3	.0340	.0637	.0055	.0102	0006	.0013	.0003
Elem Avge SDev %RSD	Zn2138 .0076 .0005 6.145	Zr3391 0022 .0003 11.76					
#1 #2 #3	.0078 .0070 .0079	0019 0022 0024	B-4	40•	-		

Analysis Report

Fri 12-03-93 04:02:32 PM page 1

Operator: gaw

Sample Name: blank Method: GEN Sample No Run Time: 12/03/93 16:01:06

-.0032

-.0029

-.0029

.0062

.0062

.0061

#1

#2

#3

(as a samp	ole Factor: 1	 L				
	Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
	Avge	.0007	.0036	.0094	.0016	0001	0056	.3724
	SDev	.0004	.0014	.0009	.0001	.0001	.0074	.0025
	%RSD	56.95	38.81	10.16	8.571	84.02	132.4	.6671
	#1	.0007	.0044	.0089	.0015	0001	0009	.3703
	#2	.0003	.0045	.0105	.0017	0002	0142	.3751
	#3	.0011	.0020	.0088	.0016	0001	0017	.3717
	Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
	Avge	.0008	.0094	.0005	.0001	.0000	.0009	.0004
	SDev	.0005	.0008	.0007	.0001	.0003	.0001	.0001
	%RSD	60.00	8.221	155.7	87.62	9697000.	17.56	37.50
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#1	.0003	.0100	0001	.0002	0004	.0010	.0002
	#2	.0012	.0096	.0012	0000	.0002	.0008	.0004
	#3	.0008	.0085	.0002	.0002	.0002	.0008	.0005
	Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
	Avge	.0032	.5131	.0010	.0038	.0763	.0001	.0006
	SDev	.0003	.0240	.0002	.0001	.0039	.0001	.0015
	%RSD	11.19	4.669	21.78	3.208	5.121	173.2	239.1
	#1	.0028	.4859	.0009	.0038	.0749	0001	.0021
	#2	.0035	.5312	.0009	.0036	.0733	.0001	.0007
	#3	.0032	.5221	.0013	.0038	.0807	.0001	0009
	Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	s_1820
	Avge	486.4	470.3	.0406	.0070	.0621	0013	.0794
	SDev	4.3	1.0	.0022	.0012	.0022	.0011	.0046
	%RSD	.8937	.2199	5.538	16.82	3.582	88.59	5.759
	#1	491.3	471.5	.0396	.0079	.0616	0000	.0749
	#2	482.9	470.1	.0431	.0075	.0645	0022	.0841
	#3	485.0	469.4	.0390	.0056	.0601	0015	.0791
	Elem Avge SDev %RSD	si2881 .0273 .0027 9.939	Sn1899 .0629 .0045 7.092	Sr4215 .0052 .0000 .0000	Te2142 .0103 .0073 70.34	Ti33490017 .0000	V_2924 .0006 .0002 28.94	Y_3710 .0002 .0001 34.64
	#1	.0302	.0593	.0052	.0026	0017	.0007	.0002
	#2	.0268	.0679	.0052	.0171	0017	.0004	.0002
	#3	.0248	.0615	.0052	.0113	0017	.0007	.0003
	Elem Avge SDev %RSD	Zn2138 .0062 .0001 1.202	Zr3391 0030 .0001 4.961					

B-41

1

Fri 12-03-93 03:56:32 PM page 1 Analysis Report Operator: gaw Sample Name: 100 area soil Method: GEN Run Time: 12/03/93 15:55:07 Comment: 5.1gram sample weight 100grams eff 3x Corr. Factor: 1 Mode: CONC Ca3179 Bi2230 B 2496 Ba4934 Be3130 A13082 Aq3280 Elem 33.58 .0045 .0179 .1572 .0002 .0786 .0029 Avge .25 .0006 .0000 .0136 .0070 .0017 SDev .0008 .7560 .3805 1.215 299.9 8.904 9.428 28.91 %RSD -.0059 33.31 .0002 .1569 .0755 .0193 #1 .0023 .0002 33.82 .0199 .1568 .0866 .0183 #2 .0039 -.0004 33.61 .0002 .0160 .1579 .0737 .0025 #3 Eu3819 Cu3247 Dv3531 Cr2677 Co2286 Elem Cd2288 Ce4186 .0044 .0013 .0031 .0128 .0065 .0032 .0582 CCAvge .0001 .0005 .0005 .0009 .0008 SDev .0077 .0012 11.78 10.34 6.892 7.160 26.98 35.96 13.31 .0012 .0044 .0060 #1 .0032 .0119 .0031 .0536 .0015 #2 .0049 .0069 .0137 .0671 .0039 .0022 .0013 .0039 .0128 .0066 .0022 .0538 .0045 Mo2020 Mg2790 Mn2576 Li6707 La3988 K 7664 Fe2599 Elem .0922 .0040 2.636 .0059 .0108 2.437 Avge .0099 .0004 .008 .0009 .0000 .0013 .0007 .142 SDev .4420 21.73 .0000 .2921 11.70 6.969 5.839 %RSD .0917 .0037 .0059 2.635 .0098 2.310 .0092 #1 .0050 .0925 2.628 .0122 .0059 .0106 2.591 #2 .0034 .0923 .0059 2.643 .0099 2.410 .0104 #3 S_1820 P_1782 Pb2203 Ni2316 Nd4061 Na5889 Na3302 Elem .2302 .1383 .0231 463.2 .0304 .1051 476.9 Avge .0033 .0078 .0026 .0122 .0028 2.2 SDev 3.6 1.429 8.841 33.67 2.663 8.413 .4847 %RSD .7625 .0191 .2264 .0274 .1260 .1023 480.1 463.9 #1 .2325 .0321 .1385 .0320 .1079 460.7 472.9 #2 .2318 .0182 .0317 .1504 465.0 .1050 477.7 #3 Y 3710 V 2924 Ti3349 Sr4215 Te2142 Sn1899 Si2881 Elem .0036.0013 .1170 .0444 -.0003 .0767 1.983 Avge .0001 .0008 .0002 .0005 .0097 .0032 .011 **SDev** 21.58 6.662 69.28 21.80 .4303 .5606 4.117 %RSD .0012 .0537 .0029 -.0004.1171 .0782 1.971 #1 .0014 -.0001 .0044 .0451 .0731 .1165 #2 1.988 .0012 -.0004 .0035 .0344 .1174 .0788 1.991 #3 Zr3391 Zn2138 Elem -.0003 .0446 Avge .0004 .0004 SDev 131.8 **%RSD** .8194

B-42

-.0004

.0001

-.0006

#1

#2

#3

.0449

.0447

.0442

page 1 Fri 12-03-93 04:27:19 PM Analysis Report Operator: gaw Sample Name: 100 sfr 1 Method: GEN Run Time: 12/03/93 16:25:54 Comment: 5.0 grams sample wt. 100.eff 3x Corr. Factor: 1 Mode: CONC Ca3179 Bi2230 Ba4934 Be3130 B 2496 Aq3280 A13082 Elem .5497 .0020 .0001 .0040 .0130 .0029 .1162 Avge .0060 .0115 .0001 .0003 .0017 .0004 .0103 SDev 1.095 8.678 62.15 563.7 12.87 15.58 8.870 %RSD .0153 .5430 .0001 .0037 .0148 .0034 .1270 #1 -.0058 .5513 .0001 .0039 .1153 .0126 .0026 #2 .5547 -.0034 .0002 .0115 .0043 .0026 .1064 #3 Eu3819 Dy3531 Cr2677 Cu3247 Co2286 Ce4186 Cd2288 Elem .0008 15 .0024 .0037 .0041 .0034 .0225 .0006 Avge .0000 .0003 .0004 .0003 .0005 .0003 .0025 **SDev** .0000 16.46 7.317 9.179 15.27 11.06 43.31 %RSD .0008 .0044 .0029 .0039 .0038 .0253 .0008 #1 .0023 .0008 .0038 .0029 .0033 .0216 #2 .0003 .0008 .0021 .0041 .0040 .0032 .0206 #3 .0008 Mo2020 Mn2576 Mg2790 Li6707 K 7664 La3988 Fe2599 Elem .0043 .1139 .0020 .0044 .9190 .0045 .0476 Avge .0001 .0006 .0049 .0003 .0004 .0484 .0005 SDev 14.47 5.774 7.274 4.296 8.498 5.267 .9705 %RSD .0051 .1167 .0021 .0047 .9749 .0045 .0480 #1 .0019 .0040 .1167 .0049 .0040 .8888 .0476 #2 .0040 .0019 .1082 .0041 .0045 .8934 .0471 #3 S 1820 Pb2203 P 1782 Ni2316 Nd4061 Na3302 Elem Na5889 .0797 .0750 .0196 .0128 .0545 472.0 481.9 Avge .0042 .0059 .0063 .0028 .0042 1.1 4.4 SDev 5.311 8.421 30.14 32.33 5.052 %RSD _ .9080 .2267 .0750 .0250 .0787 .0118 470.8 .0571 478.2 #1 ...0206 .0832 .0093 .0787 472.5 .0549 480.7 #2 .0810 .0133 .0677 .0516 .0174 472.8 486.7 #3 Y_3710 V 2924 Te2142 Ti3349 Sr4215 Sn1899 Si2881 Elem .0006 .0029 .0005 .0272 .0062 .0682 .1835 Avge .0003 .0001 .0092 .0003 .0000 .0009 .0021 SDev 23.08 50.92 10.71 .0000 33.69 .4717 3.052 %RSD .0032 .0006 .0262 .0008 .0062 .0701 .1840 #1 .0005 .0008 .0026 .0062 .0368 .0685 .1840 #2 .0005 .0029 .0003 .0062 .0186 .0660 .1825 #3 Zr3391 Zn2138 Elem -.0016 .0100 Avge .0003 .0005 SDev 18.84 5.251 **%RSD**

B-43

.0104

.0103

LPNN

#1

#2

ヰっ

-.0014

-.0014

-.0019

Analysis Report

Fri 12-03-93 04:14:01 PM

page l

· ·	•						
Method: Run Time	GEN : 12/03/93 5.1 grams	Sample Name 16:12:36		•	Ope	erator: ga	W
Mode: CO	NC Corr.	Factor: 1	. 100. CII	011			
Elem Avge SDev	Ag3280 .0020 .0014	A13082 .0693 .0055	B_2496 .0128 .0011	Ba4934 .0037 .0002	Be3130 .0002 .0000	Bi2230 .0002 .0043	Ca3179 .6341 .0097
%RSD	66.40	7.917	8.852	6.495	1.514	2164.	1.537
#1 #2	.0036 .0011	.0757 .0660	.0137 .0132	.0039 .0035	.0002 .0002	0027 .0052	.6428 .6236
#3	.0015	.0663	.0115	.0035	.0002	0019	.6360
Elem Avge SDev	Cd2288 .0003 .0000	Ce4186 .0171 .0073	Co2286 .0026 .0009	Cr2677 .0029 .0018	Cu3247 .0061 .0007	Dy3531 .0017 .0010	Eu3819 .0006 .0003
 %RSD	.0025	42.73	34.47	61.07	11.55	57.02	48.04
#1 #2 #3	.0003 .0003 .0003	.0255 .0134 .0123	.0036 .0022 .0019	.0049 .0015 .0022	.0069 .0057 .0057	.0029 .0013 .0010	.0009 .0005 .0004
Elem Avge SDev %RSD	Fe2599 .2136 .0016 .7567	K_7664 .8194 .3044 37.15	La3988 .0030 .0017 56.79	Li6707 .0041 .0002 5.871	Mg2790 .1183 .0069 5.849	Mn2576 .0035 .0002 5.660	Mo2020 .0038 .0013 35.34
#1 #2 #3	.2136 .2120 .2153	1.170 .6715 .6172	.0049 .0021 .0019	.0043 .0038 .0043	.1262 .1135 .1151	.0037 .0035 .0033	.0053 .0029 .0032
Elem Avge SDev %RSD	Na5889 475.7 3.1 .6498	Na3302 471.1 4.1 .8770	Nd4061 .0517 .0066 12.84	Ni2316 .0115 .0008 7.293	P_1782 .0693 .0070 10.16	Pb2203 .0256 .0062 24.15	<pre>S_1820 .0904 .0060 6.602</pre>
#1 #2 - #3	472.1 477.4 477.5	466.9 471.3 475.1	.0594 .0485 .0473	.0107 .0124 .0114	.0734 .0734 .0612	.0317 .0258 .0194	.0960 .0841 .0910
Elem Avge SDev %RSD	Si2881 .1998 .0078 3.920	Sn1899 .0658 .0027 4.082	Sr4215 .0062 .0000	Te2142 .0390 .0080 20.59	Ti3349 .0005 .0005 99.22	V_2924 .0021 .0010 48.26	Y_3710 .0005 .0003 51.96
#1 #2 #3	.2088 .1962 .1943	.0685 .0660 .0631	.0062 .0062 .0062	.0364 .0327 .0481	.0010 .0001 .0003	.0032 .0013 .0016	.0008 .0003 .0003
Elem Avge SDev %RSD	Zn2138 .0102 .0004 4.249	Zr3391 0020 .0010 48.58					•
#1 #2 #3	.0107 .0099 .0100	0009 0024 0027	B-44				
 ••						•	

Fri 12-03-93 04:22:19 PM page 1 Analysis Report Operator: gaw Sample Name: 100 sfr 3 Method: GEN Run Time: 12/03/93 16:20:53 Comment: 5.1 grams sample wt. 99.8 eff 3x Corr. Factor: 1 Mode: CONC Ca3179 Bi2230 Be3130 Ba4934 B 2496 A13082 Ag3280 Elem .5143 .0150 .0001 .0036 .0738 .0157 .0030 Avge .0051 .0042 .0000 .0001 .0003 .0007 .0011 SDev 33.78 .8067 1.265 2.193 2.055 1.489 23.32 %RSD .5182 .0098 .0001 .0159 .0037 .0750 #1 .0024 .5148 .0001 .0153 .0037 .0154 .0736 #2 .0038 .5100 .0200 .0001 .0035 .0159 .0028 .0729 #3 Eu3819 Dy3531 Elem Cu3247 Cr2677 Co2286 Ce4186 Cd2288 .0023 .0008 .0054 .0041 .0030 **≅**Avge .0231 .0011 .0001 .0003 .0003 .0010 .0003 .0012 *SDev .0007 %RSD 17.65 11.21 5.660 8.362 34.00 65.48 5.372 #1 .0006 .0021 .0057 .0044 .0039 .0224 .0017 .0009 .0026 .0054 .0032 .0038 寰#2 .0012 .0246 .0008 .0023 .0051 .0040 .0019 .0224 .0003 #3 Mn2576 Mo2020 Mg2790 La3988 Li6707 K 7664 Fe2599 Elem .0038 .0025 .1126 .0043 .0043 .9643 .1329 Avge .0006 .0000 .0004 .0031 .0009 .0013 .0883 SDev 14.92 .0000 2.756 8.518 20.52 9.156 .9570 %RSD .0042 .0025 .0038 .1114 .0038 .9658 #1 .1314 .0032 .0025 .1161 .0045 .0053 1.052 #2 .1335 .0040 .1103 .0025 .0045 .0038 .1337 .8753 #3 Pb2203 S_1820 P_1782 Ni2316 Na3302 Nd4061 Na5889 Elem .0939 .0883.0339 -.0176 472.3 .0551 482.3 Avge .0061 .0012 .0105 .0031 .0030 .7 6.9 SDev 3.608 6.453 11.89 -5.586 17.09 .1382 1.437 %RSD .0912 .0353 .0762 .0531 .0192 471.6 #1 474.7 .1009 .0336 .0194 .0944 .0586 472.5 #2 484.2 .0897 .0329 .0944 .0141 .0536 488.1 472.9 #3 Y 3710 V 2924 Ti3349 Te2142 Sr4215 Sn1899 Si2881 . Elem .0007 .0026 .0219 .0012 .0690 .0062 .1804 Avge .0002 .0003 .0001 .0150 .0000 .0018 .0019 SDev 12.37 12.04 18.23 .0000 68.36 2.641 1.060 **%RSD** .0006 .0010 .0023 .0328 .0685 .0062 .1802 #1 .0026 .0008 .0014 .0048 .0062 .0675 .1824 #2 .0006 .0010 .0029 .0280 .0062 .0710 .1786 #3 Zr3391 Zn2138 Elem -.0016.0096 Avge .0003 .0003 SDev

B-45

19.00

-.0014

-.0014

-.0019

2.819

.0098

.0097 .0093

%RSD

#1

#2

#3

Fri 12-03-93 04:24:29 PM

page 1

į

1!

:

Operator: gaw Sample Name: 300 area soil Method: GEN. Run Time: 12/03/93 16:23:04 Comment: 3x. Corr. Factor: 1 Mode: CONC Ca3179 Bi2230 Be3130 B_2496 Ba4934 A13082 Elem Ag3280 43.78 .0006 .0214 3.195 .0263 2.361 .0132 Avge .16 .003 .0040 .0001 .0016 .053 .0010 SDev .3623 .1073 15.14 18.69 6.023 2.235 7.223 **%RSD** .0180 43.74 .0005 3.191 .0254 2.308 .0126 #1 43.95 3.196 .0258 .0007 .0143 12.361 .0282 #2 .0203 43.64 .0005 3.198 .0254 2.413 #3 .0128 Ce4186 Eu3819 Dv3531 Cu3247 cr2677 Co2286 Cd2288 Elem .0025 .6330 .0064 .0085 .0417 .1047 Avge .0032 .0003 .0001 .0009 -.0016 .0019 .0010 SDev .0003 3.208 4.770 .2533 11.40 2.142 8.245 1.768 ERSD × (*** .0062 .0024 .6318 .0080 .0409 .0031 .1051 **料** .0067 .0026 .6324 .0427 .0096 .1063 .0035 .0024 .6348 .0062 .0416 ,1027 .0080 .0031 #3 Mo2020 Mn2576 Mg2790 Li6707 K 7664 La3988 Fe2599 Elem .0086 .0929 4.875 .0215 .0056 \ 2.719 .0229 Avge .0013 .0003 .0010 .0005 .006 .152 .0003 **SDev** 14.54 .3649 9.437 .1274 4.585 5.585 %RSD 1.537 .0083 .0927 4.870 .0208 .0055 .0226 2.623 #1 .0933 .0099 .0061 4.872 .0226 .0233 2.894 #2 4.882 .0075 .0927 .0051 .0211 .0229 2.641 #3 S 1820 P_1782 Pb2203 Ni2316 Na3302 Nd4061 Na5889 Elem .1300 .2575 .0607 .1171 .0768 478.6 :483.4 Avge .0098 .0055 .0009 .0048 .0013 4.1 1.3 SDev 2.141 .7799 16.12 6.225 .2624 1.024 .8475 **%RSD** .0540 .2541 .1177 .0741 .1293 479.0 485.3 #1 .2639 .1160 .0719 .0824 .1315 477.2 #2 478.7 .2546 .0562 .0740 .1175 ,.1292 479.6 #3 .486.3 Y_3710 V 2924 Te2142 Ti3349 Sr4215 Si2881 Sn1899 Elem .0030 .0019 .0094 .3123 .0676 .0951 11.59 Avge .0002 .0003 .0005 .0003 .0053 .0139 .00 **SDev** 5.773 3.281 16.24 .1612 20.53 ...0374 5.577 **%RSD** .0018 .0094 .0029 .0597 ...1007 .3119 11.59 #1 .0097 .0032 .0943 .0023 .0596 .3129 11.59 #2 .0029 .0091 .0018 .3122 .0837 11.58 .0902 #3 Zr3391' Zn2138 Elem .0031 .0312 Avge .0004 ...0003 SDev ...8746 .. 12.55 %RSD .0032 .0313 #1

B-46

,0035

. , , 0027

.0314

..0309

#2

#3

Analysis Report

Fri 12-03-93 04:09:16 PM

page 1

		Otone CDU
Method: GEN	Sample Name: 300 sfr 1	Operator: gaw
Run Time: 12/03/93		
Run Time. 12/05/50	sample wt. 99.9 eff 3x	•
Comment: 3.0 grams	Destant 1	

				7
	~~**	C~~~	HACTOR	1
Mode:	CONC	COLT.	Factor:	_

Mode:	CONC	Corr.	Factor: 1					
				B_2496	Ba4934	Be3130	Bi2230	Ca3179
Elem		3280	A13082	D_2490	.0047	.0000	0036	.5268
Avge	.00	014	.0594	.0159	.0003	.0001	.0056	.0034
SDev	.00	004	.0023	.0000		190.5	157.4	.6549
%RSD	31	.99	3.901	.0980	6.063	190.5	10111	
				0160	.0046	0001	0051	.5231
#1		009	.0567	.0160	.0050	.0001	0083	.5299
#2	.0	016	.0609	.0159	.0045	.0001	.0027	.5272
#3	.0	016	.0606	.0159	.0043	.000_		
			0-1106	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
Elem		2288	Ce4186	.0018	.0018	.0251	.0014	.0006
Avge		002	.0148		.0009	.0005	.0007	.0001
SDev		005	.0020	.0004	49.97	2.095	47.79	14.43
%RSD	34	6.6	13.23	21.63	43.31	20000		
			0100	.0016	.0011	.0244	.0008	.0005
#1		0002	.0129	.0022	.0029	.0254	.0021	.0006
#2		0002	.0168	.0022	.0015	.0254	.0013	.0005
#3	.0	8000	.0148	.0010	.0010			
			** 7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
Elem		2599	К_7664	.0027	.0040	.1038	.0048	.0022
Avge		3961	.7198		.0003	.0077	.0001	.0008
SDev		031 .	.1633	.0009	8.040	7.431	2.373	38.57
%RSD	.7	7886	22.69	34.67	0.040			
	_		.5629	.0021	.0036	.0976	.0046	.0023
#1		3929	.8888	.0038	.0040	.1124	.0048	.0029
#2		3963		.0022	.0043	.1013	.0048	.0012
#3	. 3	3991	.7078	.0022	.0010			
	-7	5000	Na3302	Nd4061	Ni2316	P_1782	Pb2203	S_1820
Elem		a5889	471.6	.0477	.0127	. 0 798	.0130	.0857
Avge	48	32.6		.0044	.0008	.0063	.0103	.0060
SDev	_	.7	1.7	9.334	6.387	7.848	79.86	7.003
%RSD	-]	1376	.3664	7.334	0.00.			
	<u>.</u>	00 1	470.8	.0445	.0121	.0775	.0052	.0788
#1		82.1	470.5	.0528	.0136	.0869	0247	.0899
#2 .	• •	82.4	473.6	.0458	.0123	.0750	.0090	.0882
#3	40	83.4	473.0	.0200		•		** 2770
***	G.	i2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710 .0005
Elem	-		.0677	.0061	.0168	.0008	.0016	
Avge		2212	.0033	.0001	.0018	.0002	.0008	.0001
SDev		0044	4.919	1.560	10.96	21.43	49.71	30.00
%RSD	1	.983	4.913	1.500				
		2161	.0714	.0060	.0149	.0007	.0007	.0003
#1		2161	.0666	.0062	.0186	.0010	.0023	0006
#2		2237	.0650	.0060	.0168	.0008	.0020	.0005
#3	•	2238	.0050	.000	• - -			
m1		n2138	Zr3391					
Elem		0172	0023			-		
Avge		0007	.0006					

25.31 -.0027

.0006

.0166 -.0027 .0179 -.0017 .0171 -.0027

.0007

3.921

SDev

%RSD

#1

#2

#3

B-47

Analysis Report

Fri 12-03-93 04:00:16 PM

Operator: gaw

page 1

Sample Name: 300 sfr 2 Method: GEN Run Time: 12/03/93 15:58:51

Comment: 5.3gram sample weight 100.1grams eff 3x

.0000

.0519

-.0027

-.0027

-.0027

.0001

.5589

.0242

.0239

.0240

SDev

%RSD

#1

#2

#3

	Mode: CO	NC Corr.	Factor: 1					
	Elem	Ag3280	A13082	B_2496	Ba4934	Be3130	Bi2230	Ca3179
	Avge	.0009	.0499	.0130	.0086	0001	0089	.6162
	SDev	.0005	.0032	.0017	.0001	.0001	.0049	.0010
	%RSD	58.77	6.368	12.93	.9164	83.76	55.76	.1706
	#1	.0013	.0507	.0148	.0086	0001	0060	.6174
	#2	.0011	.0464	.0126	.0087	0002	0060	.6160
	#3	.0003	.0525	.0115	.0086	0001	0146	.6153
	Elem	Cd2288	Ce4186	Co2286	Cr2677	Cu3247	Dy3531	Eu3819
	Avge	.0005	.0115	.0008	.0015	.0326	.0011	.0004
	SDev	.0010	.0031	.0005	.0002	.0000	.0001	.0001
	%RSD	208.1	26.75	65.62	14.35	.0000	13.16	19.25
1 2 2 2	#1	0006	.0114	.0002	.0015	.0326	.0010	.0004
	#2	.0012	.0146	.0012	.0013	.0326	.0013	.0005
	#3	.0008	.0085	.0009	.0018	.0326	.0010	.0004
	Elem	Fe2599	K_7664	La3988	Li6707	Mg2790	Mn2576	Mo2020
	Avge	.1892	.6821	.0019	.0037	.1206	.0035	.0022
	SDev	.0013	.0577	.0004	.0001	.0019	.0000	.0006
	%RSD	.6800	8.456	19.47	3.268	1.541	.0000	25.34
	#1	.1878	.7485	.0023	.0038	.1204	.0035	.0018
	#2	.1894	.6534	.0020	.0036	.1225	.0035	.0029
	#3	.1903	.6444	.0016	.0036	.1188	.0035	.0021
	Elem	Na5889	Na3302	Nd4061	Ni2316	P_1782	Pb2203	S_1820
	Avge	479.4	465.5	.0436	.0066	.0530	.0076	.0893
	SDev	3.6	2.2	.0021	.0004	.0041	.0058	.0106
	%RSD	.7468	.4783	4.794	6.241	7.699	76.49	11.93
	#1	475.4	464.5	.0460	.0071	.0527	.0035	.0979
	#2	480.1	464.0	.0422	.0065	.0571	0050	.0925
	#3	482.5	468.1	.0427	.0063	.0490	.0142	.0773
	Elem	Si2881	Sn1899	Sr4215	Te2142	Ti3349	V_2924	Y_3710
	Avge	.1887	.0580	.0062	.0206	.0003	.0011	.0003
	SDev	.0027	.0061	.0000	.0116	.0000	.0004	.0000
	%RSD	1.438	10.48	.0000	56.63	.0000	31.57	.0000
	#1	.1917	.0644	.0062	.0074	.0003	.0013	.0003
	#2	.1863	.0574	.0062	.0295	.0003	.0013	.0003
	#3	.1882	.0523	.0062	.0247	.0003	.0007	.0003
	Elem Avge	Zn2138	Zr3391 0027					

B-48

Fri 12-03-93 04:11:48 PM

page 1

Analysis Report Sample Name: 300 sfr 3 Operator: gaw Method: GEN Run Time: 12/03/93 16:10:23 Comment: 5.13grams sample wt. 100.2 eff 3xCorr. Factor: 1 Mode: CONC Bi2230 Ca3179 Ba4934 Be3130 B_2496 Ag3280 A13082 Elem .6355 .0032 .0054 .0001 $.\overline{0}137$.0608 .0019 Avge .0000 .0089 .0112 .0009 .0002 .0048 .0015 SDev 1.393 3.746 351.9 2.961 6.842 7.880 81.25 %RSD .6380 .0089 .0001 .0054 .0132 .0606 .0020 #1 .6428 .0104 .0001 .0054 .0148 .0657 #2 .0034 .6257 -.0098 .0001 .0052 .0132 .0562 #3 .0003 Eu3819 Dv3531 Cr2677 Cu3247 Co2286 Cd2288 Ce4186 Elem .0016 .0005 .0185 .0024 .0025 .0153 .0006 Avge .0003 .0005 .0009 .0016 .0011 .0095 .0007 SDev 2.504 60.09 54.55 65.58 43.82 61.88 114.6 %RSD .0005 .0018 .0184 .0029 .0029 .0160 #1 .0008 .0023 .0008 .0038 .0190 .0032 -.0002 .0245 #2 .0002 .0005 .0181 .0007 .0012 .0012 .0055 #3 Mo2020 Mg2790 Mn2576 Li6707 La3988 K_7664 Fe2599 Elem .0029 .0032 .1229 .0027 .0040 .6942.1727 Avge .0013 .0002 .0089 .0002 .0018 .3166 .0006 SDev 43.34 7.070 7.288 5.172 67.35 .3362 45.61 %RSD .0031 .0031 .1252 .0029 .0040 .8074 .1721 #1 .0040 .0035 .1304 .0043 .0044 .9386 .1732 #2 .0015 .0031 .0038 .1130 .0008 .3365 .1728 #3 S_1820 P 1782 Pb2203 Ni2316 Nd4061 Na3302 Na5889 Elem .0991 .0139 .0591 .0113 .0472 473.3 487.2 Avge .0047 .0082 .0076 .0010 .0070 2.6 3.4 **SDev** 4.702 .58.89 12.80 14.83 9.105 .5418 .7007 &RSD .0081 .1042 .0102 .0609 .0496 .471.9 #1 488.1 .0977 -.0233 .0508 .0114 .0527 471.7 483.4 #2 .0952 .0103 .0123 .0656 .0393 490.0 476.2 #3 Y_3710 V 2924 Ti3349 Te2142 Sr4215 Sn1899 Si2881 Elem .0004 .0007 .0019 .0165 .0678 .0062 .2111 Avge .0002 .0009 .0004 .0105 .0029 .0000 .0078 SDev 50.94 50.92 52.04 .0000 63.68 4.233 3.713 %RSD _.0005 .0016 .0008 .0200 .0062 .0650 #1 .2134 .0006 .0029 .0010 .0247 .0062 .0707 #2 .2176 .0002 .0010 .0003 .0047 .0062 .2024 .0676 #3 Zr3391 Zn2138 Elem -.0022 .0198 Avge .0006 .0003 SDev 26.15 1.401 %RSD

B - 49

-.0019

-.0019

-.0029

.0194

.0200

.0199

#1

#2 #3 DATA REPORT (Supplemental)
PNL Analytical Chemistry Lab.
Radioanalytical Group, 325 Building

1/ 21/ 94

Client: WP #:

R Merrill ED4180

Cognizant scientist:

Reviewer:

	ALO #	Customer ID	Uranium ug/g	Co-60 pCi/L	Cs-137 pCi/L	Eu-152 pCi/L	Eu-154 pCi/L	Total Alpha pCi/L	Total Beta pCi/L as Sr90
8	94-1918	100 Area Soil		< 56	37 +/~ 42%	200 +/- 13%	< 90	< 20	250 +\~16%
50	94-1919	100 SFR1*			, , , , ,	,			(000
	94-1920	100 SFR2*		< 10	< 10	< 10	< 10	< 35	< 80
	94-1921	100 SFR3*							
	94-1922	300 Area Soil	1.81E+2						
	94-1923	300 SFR1	3.81E-2						
	94-1924	300 SFR2	8.98E-2	•					
	94-1925	300 SFR3	6.44E-2	<i>a.</i> a.					
	94-1926	blank	< 4E-5 ug/ml	< 140	< 80	< 390	< 220		

^{*} These were combined and analyzed as a single sample.

^{**} Blank GEA minium detectable activities are higher than sample activities due to a shorter counting time. This approach allowed us to meet the requested report schedule.

DATA REPORT PNL Analytical Chemistry Lab. Radioanalytical Group, 325 Building

12/ 14/ 93 Analysis of TCLP Leachate

Client: WP #:

R Merrill

ED4180

Reviewer:

ALO #	Customer ID	Uranium ug/g	Co-60 pCi/L	Cs-137 pCi/L	Eu-152 pCi/L	Eu-154 pCi/L		# nc - 2E
				3\$,15°,	.7%			Ì
94-1918	100 Area Soil		< 56	37 +/- 42%	200 +/- 13%	< 90		
94-1919	100 SFR1*			17- 420	1/- 154		By shore conver.	setun with in
94-1920	100 SFR2*		< 26 4	< 180	< 18	< 10	Stymen Thurs	setion with son 114/93 collaboration of the delection parm 114/93
94-1921	100 SFR3*		4	4	17	1	mass &	pam 1/4/93
94-1922	300 Area Soil	1.81E+2			trerpyline used	laver absedu		732 A788 A738
94-1923	300 SFR1	3.81E-2			to lower every, by	ha		hereit stoo, nee
94-1924	300 SFR2	8.98E-2			,			
94-1925	300 SFR3	6.44E-2	**					
94-1926	blank	< 4E-5 ug/ml	< 140	< 80	< 390	< 220)	

WHC-SD-EN-TI-240, Yev.

^{*} These were combined and analyzed as a single sample.

^{**} Blank GEA minium detectable activities are higher than sample activities due to a shorter counting time. This approach allowed us to meet the requested report schedule.

DATA REPORT (SUPPLEMENTAL) PNL Analytical Chemistry Lab. Radioanalytical Group, 325 Building

Analysis of TCLP Leachate

12/ 17/ 93

Client: WP #:

R Merrill ED4180

Cognizant scientist:

La Possal

Date: 12/17/93

Date: 12/27/93

Reviewer:

URANIUM ISOTOPICS MASS &

ALO #	Customer ID								
ALC P	Cuscomer 1D	U-234	U-235	บ-236	U-238				
									
94-1922	300 Area Soil	0.0055	0.7286	0.0025	99.2634				

Viscosity

100 SFR

100 Area Rad Melt

VISCOSITY DATA: FERNALD GLASS

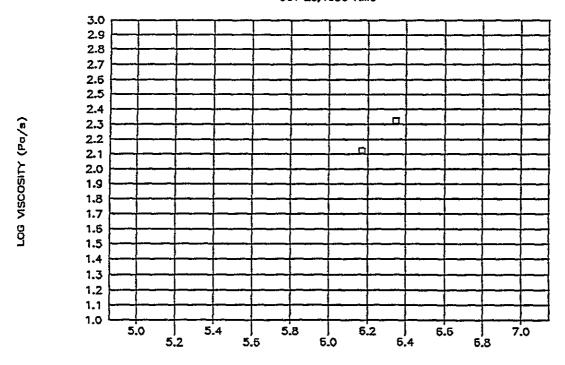
DATE:

OCT 20, 1993

OPERATOR:

KMO

SAMPLE:


FILE NAME FER-V

SPINDLE FACTOR:

10.32

	/K xE4				VISCOSITY
1348 6	· ·	77.2 61.1	0.60 0.30	132.78 210.18	2.123 2.323

LOOSFR
Viscosity: FERNALD
OCT 20,1993 KMO

TEMPERATURE [(1/K)*E^4]

□ NBS 711

CALIBRATION OF VISCOMETER USING NBS #711 REFERENCE GLASS

OCTOBER 20, 1993

Lotus File: NB102093

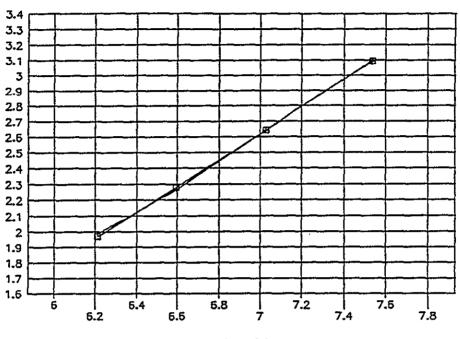
KMO

Furnace #RAD Spindle #2

оC	TEMP	READ	SPEED	THEOR. VISC	SPINDLE FACTOR	OBS VISC	PERCENT ERROR
	1337 1243 1150 1054	56.60 53.55 63.70 72.05	6.0 3.0 1.5 0.6	93.27 190.16 439.14 1248.62	9.89 10.65 10.34 10.40	97 184 438 1239	-3.23 -0.20
<u>-</u> -				AVE.=	10.32		

VISCOSITY DATA: NBS 711 Calibration Run Spindle #2

SAMPLE: NBS711 OCTOBER 20, 1993 SPINDLE FACTOR: 10.32


TEMPERA	TURE 1/KxE4	READ	SPEED	POISE	EST.VISC. NBS CURVE	PERCENT ERROR		
1337 1243 1150	6.21 6.60 7.03	56.60 53.55 63.70	6.00 3.00 1.50	97 184 438	93 190 439	4.19 -3.23 -0.20	1.99 2.27 2.64	1.97 2.28 2.64
1054	7.54	72.05	0.60	1239	1249	-0.76	3.09	3.10

The viscosity set-up has been calibrated as a system. The following is a list of integral parts of the system:

Viscometer #2 T/C # 999-78-02-055 #121 Furnace #RAD Spindle #2 Omega T/C Readout, Cal# 364-35-03-001 LOG VISCOSITY

VISCOSITY CALIBRATION

10/20/93 SPINDLE FACTOR = 10.32 KMO

10E4/TEMP(K)

□ NBS #

+ OBSERVED

WHC-SD-EN-TI-240, Rev. 0 100 SFR

ELECTRICAL CONDUCTIVIY OF FEFTHALD GLASS

LOTUS FILE NAME: FER-E

grade to the contract programme and the contract

Probe #: 7

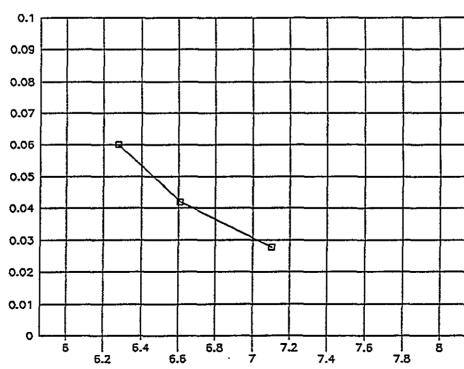
R Correction Factor and Calibration:

Date: OCT 18, 1993

(See BNW 53669 p. 137 and 138)

Operator: **KMO** Sample: FERNALD

Raw Data Averaged


Elec. Conduct. [ohm-cm]^-1

	Furnace Setting	Temp (C)	Temp Average	Resist. (ohms)	Average R(ohms)
	1350	1319		8.200	
		1320		8.190	
		1321		8.170	
9463276_DRM9			1320		8.187
	1250	1248		11.570	
Market SA		1238		11.630	
		1233	1240	11.610	11.603
	1150	1136		17.480	
		1135		17.470	
		1134	1135	17.460	17.470

1005FR

FERNALD ELEC COND 10/18/93

CELL CONSTANT=0.477 KMO

Temperature [1/T(K)*10^4] B-56

WHC-SD-EN-TI-240, Rev. 0 ...

ELECTRICAL CONDUCTIVITY CALIBRATION (LCR METER) NOTE: Special calibration with probes 1/4" into melt.

Probe #: 7

Date: 18-Oct-93

Operator KMO Furnace: RAD

Sample: NBS 711 T/C: 999-78-02-055 #121

TABLE IV. Raw Data Averaged Furnace Temp Temp Resist. Average Setting (C) Average (ohms) R(ohms) 1350 1324 5.44 1325 1326 1325 5.44 5.44 5.43 8.39 1250 1245 1237 1239 8.36 8.38 1234 8.30 1150 1139 14.27 1138 1138 14.24 14.26 14.24 1137 1050 1046 28.70 1043 28.30 1041 1043 28.10 28.37 950 956 69.40 948 67.50 66.92 949 946 66.50 944 65.70 943 65.50

Table V. Internal Resistance of Probe 7

Temperature	(C)	Resistan	e
1350		0.201	
1250		0.195	
1150		0.188	
1050		0.181	
950		0.174	

The E.C. set up has been calibrated as a system. The following is a list of integral parts of the system:

E.C. Probe #7

 $T/C \neq 999-78-02-055 \neq 121$, cal 6-9-92, due 6-9-94

T/C Readout: Cal# 364-79-06-023, cal 4-12-93, due 4-12-9

Calibration Block #2

Furnace # RAD

EC101893.XLS

ELECTRICAL CONDUCTIVIY CALIBRATION (LCR METER)

Probe #: 7 R correction factor: see Table V.

Date: 18-Oct-93 Operator KMO Sample: NBS 711

Furnace: RAD T/C Identification: 999-78-02-055 #121

TABLE I. Calibration of Cell Constant Using
National Bureau of Standards #711 Glass

Temp (C)	Temp (K)	Resistance (ohms)	R correct (ohms)	Theoretical L (ohm-cm)^-1	Theoretical Cell Constant
1325	1598	5.437	5.236	0.085	0.443
1239	1512	8.375	8.180	0.057	0.466
1138	1411	14.255	14.067	0.033	0.462
1043	1316	28.367	28.186	0.017	0.491
948	1221	66.920	66.746	0.008	0.522

Avg. (X)

X = Cell Constant

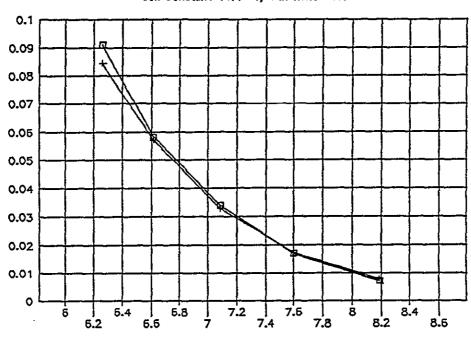
Note: To calculate R correct,

subtract the R correction factor from the resistance

reading.

TABLE II. Calibration Data Using Average Cell Constant

				Cell Constant =	0.477
Temp	Temp	Temp	Resistance	R correct	=Cell C/R cor. (L observed)
(C)	(K)	1/T(K)*10 ⁴	(ohms)	(ohms)	
1325	1598	6.258	5.437	5.236	0.091
1239	1512	6.615	8.375	8.180	0.058
1138	1411	7.087	14.255	14.067	0.034
1043	1316	7.597	28.367	28.186	0.017
948	1221	8.193	66.920	66.746	0.007


TABLE III. Calculation of Percent Error

Temp	Theoretical L	Observed L	Percent
(C)	(ohm-cm)^-1	(ohm-cm) ~-1	Error
1325	0.0846	0.0911	8
1239	0.0570	0.0583	2
1138	0.0329	0.0339	3
1043	0.0174	0.0169	-3
948	0.0078	0.0071	9

Elec. Conduct. [ohm-cm]^-1

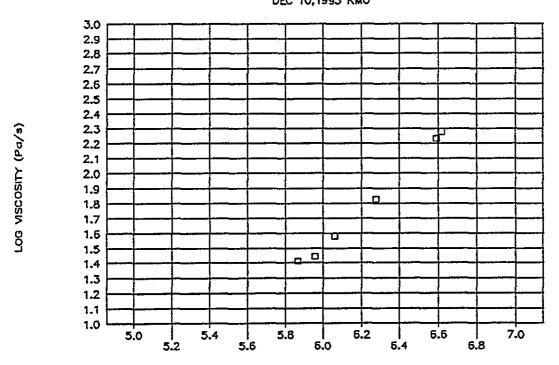
Cell Constant=.477-1/4'in melt-KMO

Temperature [1/T(K)+10^4]

- □ Observed L
- Theoretical L

700 trascittines

VISCOSITY DATA: FERNALD GLASS 300 SFR


DATE: DEC 10, 1993

OPERATOR: KMO SAMPLE: 20 SFR FILE NAME SFR-V

SPINDLE FACTOR: 10.32

TEMPE CENTIGRADE	ERATURE E 1/K ×E4	READ.	SPEED	VISCOSITY Pa/s	LOG VISCOSITY
1432	5.87	37.55	1.5	25.83	1.412
1406	5.96	40.70	1.5	28.00	1.447
1377	6.06	55.65	1.5	38.29	1.583
1320	6.28	39.15	0.6	67.34	1.828
1244	6.59	49.56	0.3	170.49	2.232
1238	6.62	55.25	0.3	190.06	2.279

300 SFR
Viscosity: FERNALD SRF
DEC 10,1993 KM0

TEMPERATURE [(1/K)*E^4]

□ Fernald SFR

B-60

gys5₽R

ELECTRICAL CONDUCTIVIY OF REPNALD SRF GLASS

LOTUS FILE NAME: SFR-E

Probe #: 7

R Correction Factor and Calibration:

Date: DEC 14, 1993

(See BNW 53669 p. 137 and 138)

Operator: KMO Sample: FERNALD SFR

Raw Data Averaged

3005FR

ELECTRICAL CONDUCTIVIY OF FERNALD SRIF GLASS

LOTUS FILE NAME: SFR-E

Probe #: 7

Date: DEC 14, 1993

Operator:

Sample: FERNALD SFR

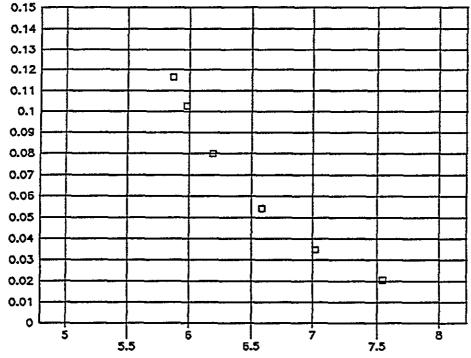
KMO

(from BNW53669 p. 137 and 138)

R correction Factor and Calibration:

Cell Constant =

0.477


Temp (C)	Temp (K)	Temp 1/T(K)*10^4	Resistance (ohms)	R correct (ohms)	L=Cell C/R cor.	
1433	1706	5.862	4.31	4.104	0.116	
1342	1615	6.192	6.163	5.962	0.080	
1246	1519	6.585	8.993	8.798	0.054	
1150	1423	7.026	13.917	13.729	0.035	
1052	1325	7.547	23.300	23.119	0.021	
1400	1673	5.977	4.850	4.646	0.103	

Elec. Conduct. [ohm-cm]^-1

INTERNAL RESISTANCE MEASUREMENTS FOR PROBE #7 (SEE BNW 53669 p.137)

TEMPERATURE (C)	AVERAGE RESISTANCE
1350	0.201
1250	0.195
1150	0.188
1050	0.181
950	0.174
1450	0.206

300 SFR ELEC COND 12/14/93 CELL CONSTANT=0.477 KMO

APPENDIX C MODIFIED TCLP PROCEDURE

THIS PAGE INTENTIONALLY LEFT BLANK

MODIFICATION OF TOXICITY CHARACTERISTIC LEACHING PROCEDURE FOR WASTE FORM DURABILITY TESTING (FOLLOWING METHOD 1311)

1.0 APPLICABILITY

This procedure describes the method to perform the Toxicity Characteristic Leaching Procedure (TCLP) for waste form durability testing and to prepare the leachate for metals analysis by Inductively Coupled Plasma (ICP) Spectroscopy.

2.0 DEFINITIONS

TCLP - Toxicity Characteristic Leaching Procedure ASTM Type II water - DI water

3.0 RESPONSIBLE STAFF

- Responsible engineer
- Technician.

4.0 PROCEDURE

The major difference between this procedure and the TCLP by Method 1311 is the size fraction of the sample used. In order to provide greater comparability between samples and to provide a more controlled surface area for leaching, a controlled size fraction is used (+1 mm/-4 mm) rather than the standard -9.5 mm fraction required by Method 1311. If it is desired to compare results to the Method 1311 procedure for the TCLP metals, then this procedure can be followed using a sample crushed to -9.5 mm and quantitatively transferred to the extraction bottle. Another difference is the lack of acidification of the leachate prior to analysis. Experience has shown that acidification of the leachate interferes with the ICP analysis, likely a result of the formation of formic acid from the sodium acetate buffer.

4.1 MATERIAL LIST

All chemicals must be reagent grade.

1N HCl
1N NaOH
Glacial acetic acid
Ultrex nitric acid
ASTM Type II water
125 or 250 ml Extraction bottles made of HDPE, PP, PVC, PTFE
Disposable filter unit (PVC) with a 0.45µm cellulose nitrate filter

18 mesh or 1 mm sieve
5 mesh or 4 mm sieve
Hammer
Chisel
Sample vials
Hot plate
Thermometer
500 mL beaker or Erlenmeyer Flask
9.5 mm sieve (optional)
Pipette

Note: Measure all pH values to X.XX, except for cases in the preliminary evaluation where it is apparent that the pH is much less than 5.0. Use a balance with a readout of X.XX g.

4.2 EXTRACTION FLUID PREPARATION

EXTRACTION FLUID #1

- Dilute 5.7 mL of glacial acetic acid to 500 mL with ASTM Type II water (DI water).
- 2. Add 64.3 mL of 1N NaOH, dilute to 1L, and mix well.
- 3. Measure the pH of the extraction fluid and record. If the fluid was prepared correctly, the pH should be 4.98±0.05.

EXTRACTION FLUID #2

- 1. Dilute 5.7 mL of glacial acetic acid to one liter with ASTM Type II water.
- 2. Measure the pH of the extraction fluid and record. If the fluid was prepared correctly, the pH should be 2.88±0.05.

4.3 SAMPLE PREPARATION

- 1. Break the glass from the crucible. Use pieces of sample which are free from attached crucible material. If this is not possible due to the small sample size, remove as much of the crucible as possible before size reduction.
- 2. Crush and screen the sample into two size fractions; $\pm 18/-5$ (1mm<d p <4mm) and ± 18 mesh (dp<1mm). A little more than 5 g of each size fraction are required. If replicate extractions are desired, about 5 g of the $\pm 18/-5$ mesh screening are required for each extraction.
- 3. Pass a magnet over the $\pm 18/-5$ mesh sample prior to transferring to the sample bottles to remove any metal contamination resulting from the sample crushing.
- 4. Transfer the screens into appropriately labeled bottles.

4.4 PRELIMINARY EVALUATION

Note: If previous tests have shown that the sample will clearly require extraction fluid #1 this step should be omitted and a note of explanation made on the data sheet. Nearly all glasses will use extraction fluid #1.

- 1. Transfer 5.0 g of the -18 mesh sample to a 500 mL beaker or Erlenmeyer Flask.
- 2. Add 96.5 mL of ASTM Type II water and 3.5 mL of 1N HCL. Slurry briefly, heat to 50° C $\pm 2^{\circ}$ C, and hold for 10 minutes.
- 3. Allow the solution to cool to room temperature and measure and record the pH.
- 4. If pH<5, use the extraction fluid #1. If pH>5.0, use extraction fluid #2.

4.5 EXTRACTION PROCEDURE

- 1. Measure and record the tare weight of the extraction bottle.
- 2. Add about 5.0 g of the $\pm 18/-5$ mesh sample. Measure and record the weight of the solid added.
- 3. Add an amount of the appropriate extraction fluid equal to 20 times the weight of the solid added. Record which extraction fluid used and measure and record the weight of the fluid added.
- 4. Close the bottle tightly and place in the TCLP tumbler.
- 5. Repeat the above for up to 11 different samples. Also prepare a blank by placing 100 g of the appropriate extraction fluid in an extraction bottle. Measure and record the initial pH of the extraction fluid blank.
- 6. Tumble the extraction bottles at 30 \pm 2 rpm for 18 \pm 2 hours at room temperature. Record starting date and time, finish date and time, and the ambient temperature.
- 7. Remove the bottles from the tumbler and filter each leachate through a fresh filter unit.
- 8. Measure and record the pH of each extract.
- 9. Prepare a 3X dilution by adding 7 mL of leachate and 14 mL of ASTM Type II water into a labeled sample vial.
- 10. Analyze the extract as soon as possible using appropriate methods and procedures. Do not acidify the samples as acidification creates problems with the ICP analysis of metals.
- 11. Dispose of the solutions following appropriate procedures.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

TCLP CONCENTRATIONS FOR SOIL FINES AND VITRIFIED SOIL FINES

THIS PAGE INTENTIONALLY LEFT BLANK

TCLP Concentrations for Soil Fines and Vitrified Soil Fines.
(Sheet 1 of 2)

D
ပ္ပ

			TCLP C	oncentratio	ons for Soi	l Fines an ntrations	d Vitrifie	d Soil Fin	es*			
	Detection				Vacc Conce		rrogate M e	1+0			· · · · · · · · · · · · · · · · · · ·	•
Element	Limit	SF1	SF2	SF3	SF4	SF5	SF6	SF7	SF8	SF9-1	SF9-2	SF9-3
		Glass	Glass	Glass	Glass	Glass	Glass	Glass	Glass	Glass	Glass	Glass
Ag	0.005				Truss	- 41440		utass	Gtass	Gtass	utass	utass
· Al	0.030	0.1575	0.2139	0.1887	0.3276	0.2088	0.2874	0.2814	0.1155	,		0.1257
В	0.010		***************************************		<u> </u>		012014	012014	0.1155			0.1231
Ba	0.003											
Be	0.003			-								-
Bi	0.060			<u> </u>								
Ca	0.010	0.4602	0.2859	0.7368	0.3735	0.4776	0.4896	0.3492	0.2952	0.3435	0.4287	0.3858
Cd	0.006				<u> </u>		<u> </u>	V. 37/L	V42772	V.2722	V-7601	0,00
Ce	0.040							<u> </u>				
Со	0.010											
Cr	0.020											*******
Cu	0.006											•
Dy	0.006											
Eu	0.004							*				
Fe	0.005	0.1953	0.1989	0.2142	0.2307	0.2115	0.3243	0,2679	0.3684	0.1527	0.2532	0.2394
K	0.300					30.0.12	1	012.077	013004	011321	01232	0.2374
La	0.010											
Li	0.005	-										
Mg	0.060	0.1467	0.1824	0.2109	0.2643	0.1881	0.2505	0.2451	0.0432	0.0342	0.0480	0.0939
Mn	0.003								0,0,00	010342	0.0400	0.0737
Мо	0.010											
Na (low)	0.050											
Na (high)	5.000									· · · · · · · · · · · · · · · · · · ·		
Nd	0.020			•								
Ni	0.020		Î					·				
P	0.080							-				
Pb	0.080					-				 		
s	0.080											
Si	0.010	0.4716	0.4812	0.4818	0.5712	0.4446	0.6882	0.5682	0.5280	0.3936	0.4755	0.4716
Sn	0.080			1						0.0700	4130	0.77 10
Sr	0.003		i				<u> </u>	<u> </u>				
Te	0.060								·····			
Ti	0.003											-
	0.010						 				 	
Y	0.003			 								
Zn	0.010							<u> </u>				
Zr	0.010											
41	0.010	<u> </u>	<u> </u>		<u> </u>	L	<u> </u>	<u> </u>		I		

* A blank entry indicates that the concentration was less than 2 times the detection limit.

7	Table D-1. TCLP Concentrations for Soil Fines and Vitrified Soil Fines. (Sheet 2 of 2)
2	TCLP
?	Concent
2 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rations (S
<u>?</u>	for
,	ns for Soil Fi (Sheet 2 of 2)
	Fines 2)
	and
	Vitr
	ified
	Soil
	Fine
\exists	·

		TCLP Co	oncentrations (a	for Soil F ll concentra	ines and Vit tions in pon	rified Soil Fin	es*			
	Detection		100 A			300 Area				
Element	Limit	Soil	SFR1	SFR2	SFR3	Soil	SFR1	SFR2	SFR3	
		Soil	Glass	Glass	Glass	Soil	Glass	Glass	Glass	
Ag	0.005					0.0362			0.000	
AL	0.030	0.2061	0.3189	0.1782	0.1917	7.0533			0.152	
B	0.010					0.0467			0.132	
Ba	0.003	0.4665				9.5799		0.0207		
Be	0.003							010201	···	
Bi	0.060									
Ca	0,010	99.6047	0.5138	0.7670	0.4076	130,2047	0.4451	0.7133	0.771	
Cd	0.006						<u> </u>	011 (33	0.771	
Ce	0.040					0.2771			***	
Co	0.010									
Cr ·	0.020					0.1220				
Cu	0.006					1.8977	0.0740	0.0965	0.054	
Dy	0.006				·	110711	0.01.40	0.0903	0.034	
Eu	0.004			**						
Fe	0.005		0.1259	0.6239	0.3818	0.0518	1.1714	0.5507	0 501	
ĸ	0.300	5.5001	0.9461	0.6473	1.0820	6.3461	0.3485	0.2354	0.501 0.271	
La	0.010				1100110	0.0588	0.3403	0.2334	0.271	
Li	0.005				··	0.0388	·			
Mg	0.060	7.6610				14.3780		0.1148	0. 121	
Mn	0.003	0.2757				0.2778		0.1146	0.121	
Мо	0.010					012770				
Na (low)	0.050			~						
Na (high)	5.000								**	
Nd	0.020	0.1809	- 0.0291	0.0207		0.2556	0.0087		0.007	
Ni	0.020					0.2007	. 0.008/		0.007	
Р	0.080					V-2001				
Pb	0.080								~····	
S	0.080	0.4392	''''			0.5211				
Si	0.010	5.8569	0.4584	0.5073	0,4491	34.6779	0.5715	0.4740	0.574	
Sn	0.080			0.2012	V14771	34.0117	61151	0.4/40	0.541	
Sr	0.003	0.3350	0.0026	0.0026	0.0026	0.9209	0.0023	0.0036	0.000	
Те	0.060	3.555	0.0020	010020	3.0020	0.7207	V.0063	0.0026	0.002	
Ti	0.003									
V	0.010									
Y	0.003		 -		 }				·	
Zn	0.010	0.1131				0.0720				
Zr	0.010	9,1131				0.0729	 -	0.0513		
		icatos thai								

* A blank entry indicates that the concentration was less than 2 times the detection limit.